Skip to main content
Log in

Flocculation and pentadecane production of a novel filamentous cyanobacterium Limnothrix sp. strain SK1-2-1

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

A novel filamentous cyanobacterium, a photosynthesizing microorganism, was isolated from a river, and its unique features of flocculation and pentadecane production were characterized.

Results

Microscopic observations and a phylogenetic analysis with 16S rDNA revealed that this strain was a Limnothrix species denoted as the SK1-2-1 strain. Auto cell-flocculation was observed when this strain was exposed to a two-step incubation involving a standing cultivation following a shaking preincubation. Flocculation was enhanced by blue light at a wavelength at 470 nm and irradiation for several hours to 1 day. Moreover, the strain exhibiting exponential cell growth may preferentially accumulate alkanes as pentadecane C15H32 alkane, which may be used as jet fuel, at a range of approximately 1% in the dry cell weight of flocculated cells.

Conclusion

This is the first study on biofuel production using flocculated cells in which the specific manner of production may be regulated by cultivation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acinas SG, Haverkamp THA, Huisman J, Stal LJ (2009) Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J 3:31–46

    Article  CAS  PubMed  Google Scholar 

  • Anderson SL, Mcintosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asayama M (2012) Overproduction and easy recovery of target gene products from cyanobacteria, photosynthesizing microorganisms. Appl Microbiol Biotechnol 95:683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9:e85140

    Article  PubMed  PubMed Central  Google Scholar 

  • Ducat CD, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103

    Article  CAS  PubMed  Google Scholar 

  • Enomoto G, Nomura R, Shimoda T, Win-N-N, Narikawa R, Ikeuchi M (2014) Cyanobacteriochrome SesA is a diguanylate cyclase that induces cell aggregation in Thermosynechococcus. J Biol Chem 289:24801–24809

  • Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T, Sivonen K (2005) Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microbial Ecol 49:176–182

    Article  CAS  Google Scholar 

  • Kageyama H, Waditee-Sirisattha R, Sirisattha S, Tanaka Y, Mahakhant A, Tanaka T (2015) Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Curr Microbiol 71:115–120

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Saotome T, Ochiai Y, Katayama M, Narikawa R, Ikeuchi M (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966

    Article  CAS  PubMed  Google Scholar 

  • Kitazaki C, Numano S, Takanezawa A, Nishizawa T, Shirai M, Asayama M (2013) Characterization of lysis of the multicellular cyanobacterium Limnothrix/Pseudanabaena sp. strain ABRG5-3. Biosci Biotech Biochem 77:2339–2347

    Article  CAS  Google Scholar 

  • Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S (2013) Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Biores Technol 131:195–201

    Article  CAS  Google Scholar 

  • Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V (2012) The microalga Parachlorella kessleri-a novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107

    Article  PubMed  Google Scholar 

  • Nishizawa T, Hanami T, Hirano E, Miura T, Watanabe Y, Takanezawa A, Komatsuzaki M, Ohta H, Shirai M, Asayama M (2010) Isolation and molecular characterization of a multicellular cyanobacterium, Limnothrix/Pseudanabaena sp. strain ABRG5-3. Biosci Biotech Biochem 74:1827–1835

    Article  CAS  Google Scholar 

  • Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137. Appl Environ Microbiol 79:6093–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R (1989) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  Google Scholar 

  • Rojo C, Cobelas MA (1994) Population dynamics of Limnothrix redekei, Oscillatoria lanceaeformis, Planktothrix agardhii and Pseudanabaena limnetica (cyanobacteria) in shallow hypertrophic lake (Spain). Hydrobiologia 275(276):165–171

    Article  Google Scholar 

  • Schirmer A, Mathew AR, Li X, Popova E, Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoi T, Kawachi M, Watanabe MM (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23:25–33

    Article  CAS  Google Scholar 

  • Whiteman P (1973) Quantitative measurements of Alcian Blue-glycosaminoglycan complexes. Biochem J 131:343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a propulsive project from Ibaraki University (to MA) and PRESTO (Sakigake project) of the Japan Science and Technology Agency (to MA).

Supporting information

Supplementary Fig. 1—Cyanobacterium SK1-2-1 cells.

Supplementary Fig. 2—Phylogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munehiko Asayama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, T., Chinzei, M., Numano, S. et al. Flocculation and pentadecane production of a novel filamentous cyanobacterium Limnothrix sp. strain SK1-2-1. Biotechnol Lett 40, 829–836 (2018). https://doi.org/10.1007/s10529-018-2525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2525-4

Keywords

Navigation