Skip to main content

Advertisement

Log in

miRNAs: Major modulators for crop growth and development under abiotic stresses

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cumulatively, biotic and abiotic stresses of various magnitudes can decrease the production of crops by 70%. miRNAs have emerged as a genetic tool with enormous potential that can be exploited to understand stress tolerance at the molecular level and eventually regulate stress in crops. Plant miRNA targets frequently fit into diverse families of TFs that control the expression of genes related to a certain trait. As key machinery in gene regulatory networks, it is agreed that a broad understanding of miRNAs will greatly increase our understanding of plant responses to environmental stresses. miRNA-led stress regulatory networks are being considered as novel tools for the development of abiotic stress tolerance in crops. At this time, we need to expand our knowledge about the modulatory role of miRNAs during environmental fluctuations. It has become exceedingly clear that with increased understanding of the role of miRNAs during stress, the techniques for using miRNA-mediated gene regulation to enhance plant stress tolerance will become more effective and reliable. In this review we present: (1) miRNAs as a potential avenue for the modulation of abiotic stresses, and (2) summarize the research progress regarding plant responses to stress. Current progress is explained through discussion of the identification and validation of several miRNAs that enhance crop tolerance of salinity, drought, etc., while missing links on different aspects of miRNAs related to abiotic stress tolerance are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Ali Q, Haider MZ, Iftikhar W, Jamil S, Javed MT, Noman A, Iqbal M, Perveen R (2016) Drought tolerance potential of Vigna mungo L. lines as deciphered by modulated growth, antioxidant defense, and nutrient acquisition patterns. Braz J Bot. doi: 10.1007/s40415-016-0282-y

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G et al (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  CAS  PubMed  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132. doi:10.1186/1471-2229-12-132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bej S, Basak J (2014) MicroRNAs: the potential biomarkers in plant stress response. Am J Plant Sci 5:748

    Article  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 82:799–816

    Article  CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, developmentmicroRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7:34783

    Article  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2005) microRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Zang L, Wang H, Liu Z, Zang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  CAS  PubMed  Google Scholar 

  • Duan K, Luo YH, Luo D, Xu ZH, Xue HW (2005) New insights into the complex and coordinated transcriptional regulation networks underlying rice seed development through cDNA chip-based analysis. Plant Mol Biol 57:785–804

    Article  CAS  PubMed  Google Scholar 

  • Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agri Environ 11:1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res. doi:10.1007/s11356-014-3754-2

    Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. doi:10.1007/s10725-014-0013-y

    Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ (2016) Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genom

  • Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 4:6122

    Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acid Res 36

  • Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackenberg M, Shi BJ, Gustafson P, Langridge P (2013) Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under different phosphorus conditions. BMC Plant Biol 13:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DKA (2005) Global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:26

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103:282–287

    Article  CAS  PubMed  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB et al (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Ren L, Chen QJ, Li R, Tang G (2009) UV-B-responsive microRNAs in Populus tremula. J Plant Physiol 166:2046–2057

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets including a stress induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH et al (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomic 12:307. doi:10.1186/1471-2164-12-307

    Article  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Li H, Zhang YX, Liu JY (2011a) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. spindica). Nucleic Acid Res 39:2821–2833

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li C, Ding G, Jin Y (2011b) Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 11:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111:791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers water deficit and salt tolerance but ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot. doi:10.1093/jxb/erv450

    Google Scholar 

  • Liang G, Yu D (2010) Reciprocal regulation among miR395, APS and SULTR2;1 in Arabidopsis thaliana. Plant Sign Behav 5:1257–1259

    Article  CAS  Google Scholar 

  • Lima J, Arenhart R, Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 84:1–5

    Google Scholar 

  • Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress responsive miRNAs in rice. J Agric Food Chem 60:6524–6536

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY et al (2008) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728

    Article  CAS  Google Scholar 

  • Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2009) Hypoxia responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  PubMed Central  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M et al (2006) The balance between the miR164a and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira FTS, Schlögl PS, Camargo SR, Fernandez JH, De Rosa JVE, Pompermayer P et al (2005) SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169:93–106

    Article  CAS  Google Scholar 

  • Noman A, Hameed M, Ali Q, Aqeel M (2012) Foliar tissue architectural diversity among three species of genus Hibiscus for better adaptability under industrial environment. Int. J Environ Sci 2:2260–2270

    Google Scholar 

  • Noman A, Hameed M, Ali Q, Mehmood T, Iftikhar T (2014) Intercultivar genetic potential of Hibiscus rosa-sinensis to grow in industrial environment of Faisalabad in relation to various leaf anatomical characteristics. Pak J Bot 46:199–206

    Google Scholar 

  • Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK. (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci. doi:10.1080/03650340.2015.1028379

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R et al (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Park W, Zhai JX, Lee JY (2009) Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep 28:469–480

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Morin H, Traas J, Laufs P (2007) Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 134:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Pilon M (2016) The copper microRNAs. New Phytol. doi:10.1111/nph.14244

    PubMed  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Saud S, Chen Y, Long B, Fahad S, Sadiq A (2013) The different impact on the growth of cool season turf grass under the various conditions on salinity and draught stress. Int J Agric Sci Res 3:77–84

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J. doi:10.1155/2014/368694

    Google Scholar 

  • Saud S, Chen Y, Fahad S, Hussain S, Na L, Xin L, Alhussien SAAFE (2016) Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res. doi:10.1007/s11356-016-6957-x

    Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:1991–2001

    Article  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath R, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. doi:10.3389/fpls.2016.00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Bio 13:210

    Article  CAS  Google Scholar 

  • Srivastava S, Suprasanna PS, D’souza (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytoremed 14:506–517

    Article  CAS  Google Scholar 

  • Stephenson T, McIntyre C, Collet C, Xue GP (2007) Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol 65:77–92

    Article  CAS  PubMed  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmentalstress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trend Plant Sci 17:196–203

    Article  CAS  Google Scholar 

  • Thiebaut FC, Rojas A, Almeida KL, Grativol C, Domiciano C, Lamb C (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35:502–512

    Article  CAS  PubMed  Google Scholar 

  • Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM (2011) Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnol J 9:684–692

    Article  CAS  PubMed  Google Scholar 

  • Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, ReyesJL VanceCP, Hernandez G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  PubMed  CAS  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM et al (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yanaz A, Novina CD (2008) MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci USA 105:5343–5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Sun YF, Song N, Wei JP, Wang XJ, Feng H et al (2014) MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96

    Article  CAS  PubMed  Google Scholar 

  • Woodger FJ, Millar A, Murray F, Jacobsen JV, Gubler F (2003) The role of GAMYB transcription factors in GA-regulated gene expression. J Plant Grow Reg 22:176–184

    Article  CAS  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Luo Y, Liao B, Xie L, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195: 97–112

  • Zafar S, Ashraf MY, Anwar S, Ali Q, Noman A (2016) Yield enhancement in wheat by soil and foliar fertilization of K and Zn under saline environment. Soil Environ 35:46–55

    Google Scholar 

  • Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182. doi:10.1186/1471-2229-12-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP (2006) Anderson TA. Conservation and divergence of plant microRNA genes. Plant J 46(2):243–259. doi:10.1111/j.1365-313X.2006.02697.X

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008a) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JF, Yuan LJ, Shao Y, Du W, Yan DW, Lu YT (2008b) The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. Plant Cell Environ 31:562–574

    Article  CAS  PubMed  Google Scholar 

  • Zhao BT, Ge LF, Liang RQ, Li W, Ruan KC, Lin HX et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P et al (2012) Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Fahad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noman, A., Fahad, S., Aqeel, M. et al. miRNAs: Major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 39, 685–700 (2017). https://doi.org/10.1007/s10529-017-2302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2302-9

Keywords

Navigation