Skip to main content
Log in

Two acetyl-CoA synthetase isoenzymes are encoded by distinct genes in marine yeast Rhodosporidium diobovatum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Two genes encoding two acetyl-CoA synthetase (ACS) isoenzymes have been identified in the marine yeast Rhodosporidium diobovatum MCCC 2A00023.

Results

ACS1 encoded a polypeptide with a sequence of 578 amino acid residues, a predicted molecular weight of 63.73 kDa, and pI of 8.14, while the ACS2 encoded a polypeptide containing 676 amino acid residues with a deduced molecular mass of 75.61 kDa and a pI of 5.95. Biological activity of Acs1p and Acs2p was confirmed by heterologous expression in Escherichia coli. A 1.5-kb DNA fragment of the ACS1 gene and a 2.7-kb DNA fragment of the ACS2 gene were deleted using the RNA guide CRISPR-Cas9 system. The strain lacking ACS1 was unable to grow on acetate and ethanol media, while the ACS2 deletant was unable to grow on glucose medium. ACS1-ACS2 double mutants of R. diobovatum were non-viable.

Conclusions

ACS isoenzymes are essential to the yeast metabolism, and other sources of ACSs cannot compensate for the lack of ACSs encoded by the two genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–954

    Article  CAS  PubMed  Google Scholar 

  • Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Siewers V, Nielsen J (2012) Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS ONE 7:e42475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Jong-Gubbels P, Van den Berg MA, Steensma HY, van Dijken JP, Pronk JT (1997) The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol Lett 153:75–81

    Article  PubMed  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64

    Article  CAS  PubMed  Google Scholar 

  • Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030

    Article  CAS  PubMed  Google Scholar 

  • Strijbis K, Distel B (2010) Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9:1809–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959

    Article  PubMed  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Research Plan of Hebei Higher Schools (No. Z2010225) and open fund of Key laboratory (No. 3333112).

Supporting information

Supplementary Table 1—Primer sequences used in this study.

Supplementary Fig. 1—(a) Comparison of the nucleotide sequences of R. diobovatum MCCC 2A00023 ACS1 genomic DNA and cDNA. (b) Comparison of the nucleotide sequences of R. diobovatum MCCC 2A00023 ACS2 genomic DNA and cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, M., Wang, T. et al. Two acetyl-CoA synthetase isoenzymes are encoded by distinct genes in marine yeast Rhodosporidium diobovatum . Biotechnol Lett 38, 417–423 (2016). https://doi.org/10.1007/s10529-015-2006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-2006-y

Keywords

Navigation