Skip to main content

Advertisement

Log in

Compressive mechanical stress may activate IKK-NF-κB through proinflammatory cytokines in MC3T3-E1 cells

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To determine whether IKK-NF-κB is activated either directly by compressive mechanical stress or by proinflammatory cytokines produced by MC3T3-E1 cells under compressive stress loading.

Results

MC3T3-E1 cells subjected to cyclic uniaxial compressive stress showed increased expression of proinflammatory cytokines and activation of the IKK-NF-κB signaling pathway with nuclear translocation of p65. Following treatment with antibodies to neutralize the action of the proinflammatory cytokines, IL-1β and IL-6, the activation of IKK-NF-κB signaling was notably inhibited in MC3T3-E1 cells subjected to force loading.

Conclusion

IKK-NF-κB signaling in MC3T3-E1 cells may be activated by proinflammatory cytokines that are produced as a consequence of mechanical stress loading and not by direct compressive mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. New Engl J Med 336:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Boyce BF (2013) Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res 28:711–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunner M, Jurdic P, Tuckerman JP, Block MR, Bouvard D (2013) New insights into adhesion signaling in bone formation. Int Rev Cell Mol Biol 305:1–68

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet G, Vico L, Bouillon R (2001) Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr 11:131–144

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  CAS  PubMed  Google Scholar 

  • Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:3482–3496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kook SH, Son YO, Choe Y, Kim JH, Jeon YM, Heo JS, Kim JG, Lee JC (2009) Mechanical force augments the anti-osteoclastogenic potential of human gingival fibroblasts in vitro. J Periodontal Res 44:402–410

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu T, Zheng Y, Zhao Z, Liu Y, Cheng H, Luo S, Chen Y (2006) Early responses of osteoblast-like cells to different mechanical signals through various signaling pathways. Biochem Biophys Res Commun 348:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zou L, Zheng Y, Zhao Z, Li Y, Yang P, Luo S (2007) NF-kappaB responds to mechanical strains in osteoblast-like cells, and lighter strains create an NF-kappaB response more readily. Cell Biol Int 31:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240

    Article  PubMed  Google Scholar 

  • Muthukuru M, Darveau RP (2014) TLR signaling that induces weak inflammatory response and SHIP1 enhances osteogenic functions. Bone Res 2:1–13

    Article  Google Scholar 

  • Wuertz K, Vo N, Kletsas D, Boos N (2012) Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur Cell Mater 23:103–119

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Yamamoto T, Ichioka H, Akamatsu Y, Oseko F, Mazda O, Imanishi J, Kanamura N, Kita M (2011) Effects of mechanical stress on cytokine production in mandible-derived osteoblasts. Oral Dis 17:712–719

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lei CQ, Hu YH, Xia T, Li M, Zhong B, Shu HB (2014) Krüppel-like factor 6 is a co-activator of NF-κB that mediates p65-dependent transcription of selected downstream genes. J Biol Chem 289:12876–12885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou S, Zhang J, Zheng H, Zhou Y, Chen F, Lin J (2013) Inhibition of mechanical stress-induced NF-κB promotes bone formation. Oral Dis 19:59–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 11472183 and 81300876) and accomplished in the State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.

Supporting Information

Supplementary Table 1—Gene-specific primers for qPCR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Zhang or Dingming Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zheng, Q., Lu, W. et al. Compressive mechanical stress may activate IKK-NF-κB through proinflammatory cytokines in MC3T3-E1 cells. Biotechnol Lett 37, 1729–1735 (2015). https://doi.org/10.1007/s10529-015-1849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1849-6

Keywords

Navigation