Skip to main content

Advertisement

Log in

Cell line development for biomanufacturing processes: recent advances and an outlook

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator’s range. This review summarizes recent advances and discusses future possibilities in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Fageeh MB, Smales CM (2013) Alternative promoters regulate cold inducible RNA-binding (CIRP) gene expression and enhance transgene expression in mammalian cells. Mol Biotechnol 54:238–249

    Article  CAS  PubMed  Google Scholar 

  • Astley K, Al-Rubeai M (2008) The role of Bcl-2 and its combined effect with p21CIP1 in adaptation of CHO cells to suspension and protein-free culture. Appl Microbiol Biotechnol 78:391–399

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Wagner-Rousset E, Bussat M-C, Lokteff M, Klinguer-Hamour C, Haeuw J-F, Goetsch L, Wurch T, van Dorsselaer A, Corvaia N (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharm Biotechnol 9:482–501

    Article  CAS  PubMed  Google Scholar 

  • Becker E, Florin L, Pfizenmaier K, Kaufmann H (2008) An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol 135:217–223

    Article  CAS  PubMed  Google Scholar 

  • Becker E, Florin L, Pfizenmaier K, Kaufmann H (2010) Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. J Biotechnol 146:198–206

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz SA, Engen JR, Mazzeo JR, Jones GB (2012) Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 11:527–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borth N, Mattanovich D, Kunert R, Katinger H (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol Prog 21:106–111

    Article  CAS  PubMed  Google Scholar 

  • Boscolo S, Mion F, Licciulli M, Macor P, De Maso L, Brce M, Antoniou MN, Marzari R, Santoro C, Sblattero D (2012) Simple scale-up of recombinant antibody production using an UCOE containing vector. New Biotechnol 29:477–484

    Article  CAS  Google Scholar 

  • Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE, Galosy S, Muller D, Noll T, Wienberg J, Jostock T, Leonard M, Grillari J, Tauch A, Goesmann A, Helk B, Mott JE, Puhler A, Borth N (2013) Chinese hamster genome sequenced from sorted chromosomes. Nat Biotechnol 31:694–695

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Sweeney B, Mainwaring DO, James DC (2014) Synthetic promoters for CHO cell engineering. Biotechnol Bioeng 111:1638–1647

    Article  CAS  PubMed  Google Scholar 

  • Chen KQ, Liu Q, Xie LZ, Sharp PA, Wang DIC (2001) Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol Bioeng 72:55–61

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Chitta R, Chang D, Amanullah A (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102:148–160

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Babb R, Fandl JP (2013) Enhanced expression and stability regions. US Patent 12/793,898

  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi SS, Rhee WJ, Kim EJ, Park TH (2006) Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using 30Kc6 gene. Biotechnol Bioeng 95:459–467

    Article  CAS  PubMed  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105:330–340

    Article  CAS  PubMed  Google Scholar 

  • De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223

    Article  Google Scholar 

  • Druz A, Son YJ, Betenbaugh M, Shiloach J (2013) Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metab Eng 16:87–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eberwine J, Sul J-Y, Bartfai T, Kim J (2013) The promise of single-cell sequencing. Nat Methods 11:25–27

    Article  Google Scholar 

  • Estes SD, Zhang W (2014) Beta-actin and RPS21 promoters and uses thereof. US Patent 7423135 B2

  • Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93:851–861

    Article  CAS  PubMed  Google Scholar 

  • Figueroa B Jr, Ailor E, Osborne D, Hardwick JM, Reff M, Betenbaugh MJ (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892

    Article  CAS  PubMed  Google Scholar 

  • Frison A, Memmert K, Novartis Pharma A (2002) Fed-batch process development for monoclonal antibody production with Cellferm-pro®. Genet Eng News 22:66–67

    Google Scholar 

  • Fukuta K, Abe R, Yokomatsu T, Kono N, Asanagi M, Omae F, Minowa MT, Takeuchi M, Makino T (2000) Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10:421–430

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghirlando R, Files K, Gowher H, Xiao T, Xu Z, Yao H, Felsenfeld G (2012) Chromatin domains, insulators, and the regulation of gene expression. Biochim Biophys Acta 1819:644–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Girard P, Jordan M, Tsao M, Wurm FM (2001) Small-scale bioreactor system for process development and optimization. Biochem Eng J 7:117–119

    Article  CAS  PubMed  Google Scholar 

  • Girod PA, Zahn-Zabal M, Mermod N (2005) Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnol Bioeng 91:1–11

    Article  CAS  PubMed  Google Scholar 

  • Goh JS, Zhang P, Chan KF, Lee MM, Lim SF, Song Z (2010) RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metab Eng 12:360–368

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Pontiller J, Mauceli E, Ernst W, Baumann M, Biagi T, Swofford R, Russell P, Zody MC, Di Palma F, Lindblad-Toh K, Grabherr RM (2011) Exploiting nucleotide composition to engineer promoters. PLoS One 6:e20136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen CLG, Lecault V, Piret JM, Singhal A (2010) System and method for microfluidic cell culture. US Patent 13/178,395

  • Hartenbach S, Fussenegger M (2006) A novel synthetic mammalian promoter derived from an internal ribosome entry site. Biotechnol Bioeng 95:547–559

    Article  CAS  PubMed  Google Scholar 

  • Hossler P, Goh LT, Lee MM, Hu WS (2006) GlycoVis: visualizing glycan distribution in the protein N-glycosylation pathway in mammalian cells. Biotechnol Bioeng 95:946–960

    Article  CAS  PubMed  Google Scholar 

  • Hou JJ, Hughes BS, Smede M, Leung KM, Levine K, Rigby S, Gray PP, Munro TP (2014) High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnol 31:214–220

    Article  CAS  Google Scholar 

  • Hsu WT, Aulakh RP, Traul DL, Yuk IH (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64:667–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Z, Guo D, Yip SS, Zhan D, Misaghi S, Joly JC, Snedecor BR, Shen AY (2013) Chinese hamster ovary (CHO) K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase (DHFR) deficient host cell. Biotechnol Prog 29(4):980–985

    Article  CAS  PubMed  Google Scholar 

  • Hwang SO, Lee GM (2009) Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells. J Biotechnol 139:89–94

    Article  CAS  PubMed  Google Scholar 

  • Ifandi V, Al-Rubeai M (2005) Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotechnol Prog 21:671–677

    Article  CAS  PubMed  Google Scholar 

  • Irani N, Wirth M, van Den Heuvel J, Wagner R (1999) Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66:238–246

    Article  CAS  PubMed  Google Scholar 

  • Jaluria P, Betenbaugh M, Konstantopoulos K, Shiloach J (2007) Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol 7:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Jayapal KP, Goudar CT (2014) Transcriptomics as a tool for assessing the scalability of mammalian cell perfusion systems. Adv Biochem Eng Biot 139:227–243

    CAS  Google Scholar 

  • Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130:300–310

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Schröder M (2008) Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 57:207–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, O’Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108(10):2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Baek E, Lee J, Lee G (2013) Autophagy and its implication in Chinese hamster ovary cell culture. Biotechnol Lett 35:1753–1763

    Article  CAS  PubMed  Google Scholar 

  • Krampe B, Al-Rubeai M (2010) Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 62:175–188

    Article  PubMed Central  PubMed  Google Scholar 

  • Ku SC, Ng DT, Yap MG, Chao SH (2008) Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol Bioeng 99:155–164

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture : a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology 53:33–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683

    Article  CAS  PubMed  Google Scholar 

  • Kuystermans D, Al-Rubeai M (2009) cMyc increases cell number through uncoupling of cell division from cell size in CHO cells. BMC Biotechnol 9:76

    Article  PubMed Central  PubMed  Google Scholar 

  • Le H, Vishwanathan N, Kantardjieff A, Doo I, Srienc M, Zheng X, Somia N, Hu W-S (2013) Dynamic gene expression for metabolic engineering of mammalian cells in culture. Metab Eng 20:212–220

    Article  CAS  PubMed  Google Scholar 

  • Lee EU, Roth JA, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galatoside alpha 2,6-sialyltransferase. J Biol Chem 264(23):13848–13855

    CAS  PubMed  Google Scholar 

  • Lee JS, Ha TK, Park JH, Lee GM (2013a) Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol Bioeng 110:2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Tsutsui T, Honda K, Asano R, Kumagai I, Ohtake H, Omasa T (2013b) Generation of high-producing cell lines by overexpression of cell division cycle 25 homolog A in Chinese hamster ovary cells. J Biosci Bioeng 116:754–760

    Article  CAS  PubMed  Google Scholar 

  • Legmann R, Schreyer HB, Combs RG, McCormick EL, Russo AP, Rodgers ST (2009) A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnol Bioeng 104:1107–1120

    Article  CAS  PubMed  Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31:759–765

    Article  CAS  PubMed  Google Scholar 

  • Liu P-Q, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD (2010) Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 106:97–105

    CAS  PubMed  Google Scholar 

  • Love KR, Bagh S, Choi J, Love JC (2013) Microtools for single-cell analysis in biopharmaceutical development and manufacturing. Trends Biotechnol 31:280–286

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25:95–102

    Article  CAS  PubMed  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moses S, Manahan M, Ambrogelly A, Ling W (2012) Assessment of AMBR as a model for high-throughput cell culture process development strategy. Adv Biosci Biotechnol 3:918–927

    Article  Google Scholar 

  • Nawy T (2014) Single-cell sequencing. Nat Methods 11:18

    Article  CAS  PubMed  Google Scholar 

  • Nehlsen K, Schucht R, da Gama-Norton L, Kromer W, Baer A, Cayli A, Hauser H, Wirth D (2009) Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol 9:100

    Article  PubMed Central  PubMed  Google Scholar 

  • Oberbek A, Matasci M, Hacker DL, Wurm FM (2011) Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 108:600–610

    Article  CAS  PubMed  Google Scholar 

  • Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, Honda K, Omasa T, Ohtake H (2008) Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol Bioeng 100:317–324

    Article  CAS  PubMed  Google Scholar 

  • Osterlehner A, Simmeth S, Gopfert U (2011) Promoter methylation and transgene copy numbers predict unstable protein production in recombinant Chinese hamster ovary cell lines. Biotechnol Bioeng 108:2670–2681

    Article  CAS  PubMed  Google Scholar 

  • Paredes C, Prats E, Cairo JJ, Azorin F, Cornudella L, Godia F (1999) Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology 30:85–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter AJ, Dickson AJ, Racher AJ (2010a) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: realizing the potential in bioreactors. Biotechnol Prog 26:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Porter AJ, Racher AJ, Preziosi R, Dickson AJ (2010b) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation. Biotechnol Prog 26:1455–1464

    Article  CAS  PubMed  Google Scholar 

  • Pradhan K, Pant T, Gadgil M (2012) In situ pH maintenance for mammalian cell cultures in shake flasks and tissue culture flasks. Biotechnol Prog 28:1605–1610

    Article  CAS  PubMed  Google Scholar 

  • Rahimpour A, Vaziri B, Moazzami R, Nematollahi L, Barkhordari F, Kokabee L, Adeli A, Mahboudi F (2013) Engineering the cellular protein secretory pathway for enhancement of recombinant tissue plasminogen activator expression in Chinese hamster ovary cells: effects of CERT and XBP1s genes. J Microbiol Biotechnol 23:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Renner WA, Lee KH, Hatzimanikatis V, Bailey JE, Eppenberger HM (1995) Recombinant cyclin E expression activates proliferation and obviates surface attachment of chinese hamster ovary (CHO) cells in protein-free medium. Biotechnol Bioeng 47:476–482

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340

    Article  CAS  PubMed  Google Scholar 

  • Seth G, McIvor RS, Hu WS (2006) 17Beta-hydroxysteroid dehydrogenase type 7 (Hsd17b7) reverts cholesterol auxotrophy in NS0 cells. J Biotechnol 121:241–252

    Article  CAS  PubMed  Google Scholar 

  • Seth G, Charaniya S, Wiaschin KF, Hu WS (2007) In pursuit of a super producer—alternative paths to high producing recombinant mammalian cells. Curr Opin Biotechnol 18:557–564

    Article  CAS  PubMed  Google Scholar 

  • Sheeley DM, Merrill BM, Taylor LCE (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal α-Linked Galactose. Anal Biochem 247:102–110

    Article  CAS  PubMed  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  PubMed  Google Scholar 

  • Sieck JB, Cordes T, Budach WE, Rhiel MH, Suemeghy Z, Leist C, Villiger TK, Morbidelli M, Soos M (2013) Development of a scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. J Biotechnol 164:41–49

    Article  CAS  PubMed  Google Scholar 

  • Sinacore MS, Charlebois TS, Harrison S, Brennan S, Richards T, Hamilton M, Scott S, Brodeur S, Oakes P, Leornard M, Switzer M, Anagnostopoulos A, Foster B, Harris A, Mankowski M, Bond M, Martin S, Adamson SR (1996) CHo DUKX cell lineages preadapted to growth in serum-free suspension culture enable rapid development of cell culture processes for the manufacturing of recombinant proteins. Biotechnol Bioeng 52:518–528

    Article  CAS  PubMed  Google Scholar 

  • Spahn PN, Lewis NE (2014) Systems glycobiology for glycoengineering. Curr Opin Biotechnol 30C:218–224

    Article  Google Scholar 

  • Thaisuchat H, Baumann M, Pontiller J, Hesse F, Ernst W (2011) Identification of a novel temperature sensitive promoter in cho cells. BMC Biotechnol 11:51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tigges M, Fussenegger M (2006) Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab Eng 8:264–272

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    Article  CAS  PubMed  Google Scholar 

  • Vishwanathan N, Le H, Jacob NM, Tsao YS, Ng SW, Loo B, Liu Z, Kantardjieff A, Hu WS (2014) Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Biotechnol Bioeng 111:518–528

    Article  CAS  PubMed  Google Scholar 

  • von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-d-lyxo-4-hexulose reductase. Glycobiology 20:1607–1618

    Article  Google Scholar 

  • Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Wlaschin KF, Hu W-S (2007) Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. J Biotechnol 131:168–176

    Article  CAS  PubMed  Google Scholar 

  • Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Mariati J Chusainow, Yap MG (2010) DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J Biotechnol 147:180–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Crawford Y, Ng D, Tung J, Pynn AF, Meier A, Yuk IH, Vijayasankaran N, Leach K, Joly J, Snedecor B, Shen A (2011) Decreasing lactate level and increasing antibody production in Chinese hamster ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. J Biotechnol 153:27–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shou Hu.

Additional information

Huong Le and Nandita Vishwanathan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, H., Vishwanathan, N., Jacob, N.M. et al. Cell line development for biomanufacturing processes: recent advances and an outlook. Biotechnol Lett 37, 1553–1564 (2015). https://doi.org/10.1007/s10529-015-1843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1843-z

Keywords

Navigation