Skip to main content
Log in

An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computational modeling

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Ice nucleation proteins (INP) are a major cause of frost damage in plants and crops. Here, an INP gene from Fusarium acuminatum was optimized, synthesized, expressed in E.coli and subsequently purified and characterized. The protein belongs to the second class of ice nucleation proteins with an optimum pH 5.5, relative activity and stability between pH 5 and 9.5 and up to 45 °C. The protein was fully active and stable in the presence of dimethyl sulfoxide (DMSO), dioxane, acetone and ethyl acetate. Moreover, it retained over 50 % of its original activity in the presence of polyvinyl alcohol. The 3D structure model of the INP-F indicated the protein had three distinct domains as exist in other ice nucleation proteins with some variations. Considering these promising results, INP-F could be a novel candidate for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Watabe S, Emori Y, Watanabe M, Arai S (1989) An ice nucleation active gene of Erwinia ananas. Sequence similarity to those of Pseudomonas species and regions required for ice nucleation activity. FEBS Lett 258:297–300

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Swartz DJ, Protasevich II, Brouillette CG, Harrell PM, Hildebrandt E, Gasser B, Mattanovich D, Ward A, Chang G, Urbatsch IL (2011) A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS ONE 6:e22577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cirvilleri G, La Rosa R, Renis M, Cartia G (1990) Identification of ice nucleation active (INA+) bacteria belonging to Pseudomonas strains. Ital J Biochem 39:162A–164A

    CAS  PubMed  Google Scholar 

  • Cochet N, Widehem P (2000) Ice crystallization by Pseudomonas syringae. Appl Microbiol Biotechnol 54:153–161

    Article  CAS  PubMed  Google Scholar 

  • Corotto LV, Wolber PK, Warren GJ (1986) Ice nucleation activity of Pseudomonas fluorescens: mutagenesis, complementation analysis and identification of a gene product. EMBO J 5:231–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gross DC, Cody YS, Proebsting EL, Radamaker GK, Spotts RA (1983) Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl Environ Microbiol 46:1370–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa Y, Ishihara Y, Tokuyama T (1994) Characteristics of ice-nucleation activity in Fusarium avenaceum IFO 7158. Biosci Biotechnol Biochem 58:2273–2274

    Article  CAS  PubMed  Google Scholar 

  • Hwang WZ, Coetzer C, Tumer NE, Lee TC (2001) Expression of a bacterial ice nucleation gene in a yeast Saccharomyces cerevisiae and its possible application in food freezing processes. J Agric Food Chem 49:4662–4666

    Article  CAS  PubMed  Google Scholar 

  • Khodi S, Latifi AM, Saadati M, Mirzaei M, Aghamollaei H (2012) Surface display of organophosphorus hydrolase on E. coli using N-terminal domain of ice nucleation protein InaV. J Microbiol Biotechnol 22:234–238

    Article  CAS  PubMed  Google Scholar 

  • Kieft TL, Ruscetti T (1990) Characterization of biological ice nuclei from a lichen. J Bacteriol 172:3519–3523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumble KD, Demmer J, Fish S, Hall C, Corrales S, DeAth A, Elton C, Prestidge R, Luxmanan S, Marshall CJ, Wharton DA (2008) Characterization of a family of ice-active proteins from the ryegrass, Lolium perenne. Cryobiology 57:263–268

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lee T-C (1995) Bacterial ice nucleation and its potential application in the food industry. Trend Food Sci Technol 6:259–265

    Article  CAS  Google Scholar 

  • Lindemann J, Constantinidou HA, Barchet WR, Upper CD (1982) Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl Environ Microbiol 44:1059–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindow SE, Arny DC, Upper CD (1982) Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol 70:1084–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maki LR, Galyan EL, Chang-Chien MM, Caldwell DR (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margaritis A, Bassi AS (1991) Principles and biotechnological applications of bacterial ice nucleation. Crit Rev Biotechnol 11:277–295

    Article  CAS  PubMed  Google Scholar 

  • Obata H, Tanaka T, Kawahara H, Tokuyama T (1993) Properties of cell-free ice nuclei from ice nucleation-active Pseudomonas fluorescens KUIN-1. J Ferment Bioeng 76:19–24

    Article  CAS  Google Scholar 

  • Orser C, Staskawicz BJ, Panopoulos NJ, Dahlbeck D, Lindow SE (1985) Cloning and expression of bacterial ice nucleation genes in Escherichia coli. J Bacteriol 164:359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pouleur S, Richard C, Martin JG, Antoun H (1992) Ice Nucleation Activity in Fusarium acuminatum and Fusarium avenaceum. Appl Environ Microbiol 58:2960–2964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turner MA, Arellano F, Kozloff LM (1990) Three separate classes of bacterial ice nucleation structures. J Bacteriol 172:2521–2526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vali G (1971) Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of supercooled liquids. J Atmos Sci 28:402–409

    Article  Google Scholar 

  • Warren G, Corotto L (1989) The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae. Gene 85:239–242

    Article  CAS  PubMed  Google Scholar 

  • Wolber PK (1993) Bacterial ice nucleation. Adv Microb Physiol 34:203–237

    Article  CAS  PubMed  Google Scholar 

  • Wolber PK, Deininger CA, Southworth MW, Vandekerckhove J, van Montagu M, Warren GJ (1986) Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci USA 83:7256–7260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wowk B, Fahy GM (2002) Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology 44:14–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the Biotechnology Division members of Ferdowsi University of Mashhad for their help. We especially thank Dr. Hakimeh Ebrahimi Nik for critical review of the manuscript. This work was supported by grants from Baqiyatallah University of Medical Sciences, which is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammad Latifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagzian, M., Latifi, A.M., Bassami, M.R. et al. An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computational modeling. Biotechnol Lett 36, 2043–2051 (2014). https://doi.org/10.1007/s10529-014-1568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1568-4

Keywords

Navigation