Skip to main content
Log in

Characterization of an aldo–keto reductase from Thermotoga maritima with high thermostability and a broad substrate spectrum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A novel aldo–keto reductase gene, Tm1743, from Thermotoga maritima was overexpressed in Escherichia coli. The enzyme displayed the highest activity at 90 °C and at pH 9. It retained 63 % of its activity after 15 h at 85 °C. The enzyme also could tolerate (up to 10 % v/v) acetonitrile, ethanol and 2-propanol with slightly increased activities. Methanol, DMSO and acetone decreased activity slightly. Furthermore, Tm1743 exhibited broad substrate specificity towards various keto esters, ketones and aldehydes, with relative activities ranging from 2 to 460 % compared to the control. Its optimum substrate, 2,2,2-trifluoroacetophenone, was asymmetrically reduced in a coupled NADPH-regeneration system with an enantioselectivity of 99.8 % and a conversion of 98 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asako H, Shimizu M, Itoh N (2008) Engineering of NADPH-dependent aldo–keto reductase from Penicillium citrinum by directed evolution to improve thermostability an enantioselectivity. Appl Microbiol Biotechnol 80:805–812

    Article  PubMed  CAS  Google Scholar 

  • Ellis EM (2002) Microbial aldo–keto reductases. FEMS Microbiol Lett 216:123–131

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (2005) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  Google Scholar 

  • Iwase M, Kurata N, Ehana R, Nishimura Y, Masamoto T, Yasuhara H (2006) Evaluation of the effects of hydrophilic organic solvents on CYP3A-mediated drug–drug interaction in vitro. Hum Exp Toxicol 25:715–721

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM (1997) Comparative anatomy of the aldo–keto reductase superfamily. Biochem J 326:625–636

    PubMed  CAS  Google Scholar 

  • Jin Y, Penning TM (2007) Aldo–keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol 47:263–292

    Article  PubMed  CAS  Google Scholar 

  • Machielsen R, Uria AR, Kengen SWM, Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo–keto reductase superfamily. Appl Environ Microbiol 72:233–238

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 20:513–557

    Article  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Ni Y, Li CX, Ma HM, Zhang J, Xu JH (2011) Biocatalytic properties of a recombinant aldo–keto reductase with broad substrate spectrum and excellent stereoselectivity. Appl Microbiol Biotechnol 89:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Richter N, Hummel W (2011) Biochemical characterisation of a NADPH-dependent carbonyl reductase from Neurospora crassa reducing α- and β-keto esters. Enzyme Microb Technol 48:472–479

    Article  PubMed  CAS  Google Scholar 

  • Schweiger P, Gross H, Deppenmeier U (2010) Characterization of two aldo–keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective α-ketocarbonyl reduction. Appl Microbiol Biotechnol 87:1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Wierenga RK (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193–198

    Article  PubMed  CAS  Google Scholar 

  • Willies S, Isupov M, Littlechild J (2010) Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase. Environ Technol 31:1159–1167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a project (20101131N06) from the Science & Technology Department of Hangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, YH., Lv, DQ., Zhou, S. et al. Characterization of an aldo–keto reductase from Thermotoga maritima with high thermostability and a broad substrate spectrum. Biotechnol Lett 35, 757–762 (2013). https://doi.org/10.1007/s10529-013-1141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1141-6

Keywords

Navigation