Skip to main content
Log in

Endo-xylanase GH11 activation by the fungal metabolite eugenitin

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Eugenitin, a chromone derivative and a metabolite of the endophyte Mycoleptodiscus indicus, at 5 mM activated a recombinant GH11 endo-xylanase by 40 %. The in silico prediction of ligand-binding sites on the three-dimensional structure of the endo-xylanase revealed that eugenitin interacts mainly by a hydrogen bond with a serine residue and a stacking interaction of the heterocyclic aromatic ring system with a tryptophan residue. Eugenitin improved the GH11 endo-xylanase activity on different substrates, modified the optimal pH and temperature activities and slightly affected the kinetic parameters of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrioli W, Silva TM, Silva VB, Damásio ARL, Maller A, Conti R, Jorge JA, Araújo JM, Silva CHTP, Pupo MT, Polizeli MLTM, Bastos JK (2012) The fungal metabolite eugenitin as additive for Aspergillus niveus glucoamylase activation. J Mol Catal B-Enzym 74:156–161

    Article  CAS  Google Scholar 

  • Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne NJ, Jackson RM (2006) Predicting protein interaction sites: binding hot-spots in protein–protein and protein-ligand interfaces. Bioinformatics 22:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  • Damásio ARL, Silva TM, Almeida FBR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MLTM (2011) Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Proc Biochem 46:1236–1242

    Article  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  PubMed  CAS  Google Scholar 

  • Levasseur A, Asther M, Record E (2005) Overproduction and characterization of xylanase B of Aspergillus niger. Can J Microbiol 51:177–183

    Article  PubMed  CAS  Google Scholar 

  • Mantyla A, Paloheimo M, Hakola S, Lindberg E, Leskinen S, Kallio J, Vehmaanpera J, Lantoo R, Suominen P (2007) Production in Trichoderma reesei of three xylanases from Chaetomium thermophile: a recombinant thermoxylanase for bleaching of kraft pulp. Appl Microbiol Biotechnol 76:377–386

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Pollet A, Delcour JA, Courtin CM (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit Rev Biotechnol 30:176–191

    Article  PubMed  CAS  Google Scholar 

  • Sehmid H (1949) Über die Inhaltstoffe von Eugenia caryphyllata (L.) Thunbg III. Isolierung und Konstitution des Eugenitins. Helv Chim Acta 32:813–820

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Aust HJ, Römmert AK, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Sugahara M, Kageyama-Morikawa Y, Kunishima N (2011) Packing space expansion of protein crystallization screening with synthetic zeolite as a heteroepitaxic nucleant. Cryst Growth Des 11:110–120

    Google Scholar 

  • Tsui W, Brown GD (1996) Chromones and chromanones from Baeckea frutescens. Phytochemistry 43:871–876

    Article  CAS  Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Janete M. Araújo from the Federal University of Pernambuco and to Dr. João Atílio Jorge from the University of São Paulo. This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo K. Bastos.

Additional information

Willian J. Andrioli and André R. L. Damásio both contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrioli, W.J., Damásio, A.R.L., Silva, T.M. et al. Endo-xylanase GH11 activation by the fungal metabolite eugenitin. Biotechnol Lett 34, 1487–1492 (2012). https://doi.org/10.1007/s10529-012-0918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0918-3

Keywords

Navigation