Skip to main content
Log in

Examining the feasibility of bulk commodity production in Escherichia coli

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Escherichia coli is currently used by many research institutions and companies around the world as a platform organism for the development of bio-based production processes for bulk biochemicals. A given bulk biochemical bioprocess must be economically competitive with current production routes. Ideally the viability of each bioprocess should be evaluated prior to commencing research, both by metabolic network analysis (to determine the maximum theoretical yield of a given biocatalyst) and by techno-economic analysis (TEA; to determine the conditions required to make the bioprocess cost-competitive). However, these steps are rarely performed. Here we examine theoretical yields and review available TEA for bulk biochemical production in E. coli. In addition, we examine fermentation feedstocks and review recent strain engineering approaches to achieve industrially-relevant production, using examples for which TEA has been performed: ethanol, poly-3-hydroxybutyrate, and 1,3-propanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A more complete rendering of the TEA methodology can be found in Klein-Marcuschamer et al. (2010, 2011).

  2. A demonstration plant has been built and is currently operated by Vercipia Biofuels; however it is unclear what biocatalyst they are using.

References

  • Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14:475–483

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  PubMed  CAS  Google Scholar 

  • Archer C, Kim J, Jeong H, Park J, Vickers C, Lee S,Nielsen L (2011) The genome sequence of E. coli W ATCC 9637: comparative genome analysis and an improved genome-scale model of E. coli. BMC Genomics 12:9. doi:10.1186/1471-2164-1112-1189

  • Arifin Y, Sabri S, Sugiarto H, Krömer JO, Vickers CE,Nielsen LK (2011) Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxyburyrate (PHB) production from sucrose in fed batch culture. J Biotechnol. doi:10.1016/j.jbiotec.2011.07.003

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  PubMed  CAS  Google Scholar 

  • Banner T, Fosmer A, Jessen H, Marasco E, Rush B, Veldhouse J, de Souza M (2011) Microbial bioprocesses for industrial-scale chemical production. In: Tao J, Kazlauskas R (eds) Biocatalysis for green chemistry and chemical process development. Wiley, Hoboken, pp 429–467

    Chapter  Google Scholar 

  • Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:1086–1102

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Boyes S, Sugiarto H, Nielsen LK,Vickers CE (2011) A universal transferrable sucrose utilization approach for non-sucrose-utilizing E. coli strains. Biotech Adv. doi:10.1016/j.biotechadv.2011.1008.1019

  • Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Iverson A, Garza E, Grayburn W, Zhou S (2009) Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Biotechnol Lett 32:87–96

    Article  PubMed  Google Scholar 

  • Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H (2007) Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission. J Biosci Bioeng 103:262–269

    Article  PubMed  CAS  Google Scholar 

  • Choi JI, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335–342

    Article  CAS  Google Scholar 

  • Choi JI, Lee SY (1999) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    PubMed  CAS  Google Scholar 

  • Dhamankar H, Prather KLJ (2011) Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. Curr Opin Struc Biol 21:488–494

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  PubMed  CAS  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotech 27:753–759

    Article  CAS  Google Scholar 

  • Edwards MC, Henriksen ED, Yomano LP, Gardner BC, Sharma LN, Ingram LO, Doran Peterson J (2011) Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl Environ Microbiol 77:5184–5191

    Article  PubMed  CAS  Google Scholar 

  • Erickson B, Nelson JE,Winters P (2011) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J. doi:10.1002/biot.201100069

  • Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  PubMed  CAS  Google Scholar 

  • Fu Y-Q, Li S, Chen Y, Xu Q, Huang H, Sheng X-Y (2010) Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy. Appl Biochem Biotechnol 162:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Campbell P, Wong M (2010) Production of ethanol from thin stillage by metabolically engineered Escherichia coli. Biotechnol Lett 32:405–411

    Article  PubMed  CAS  Google Scholar 

  • Huerta-Beristain G, Utrilla J, Hernandez-Chavez G, Bolivar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15:55–64

    Article  PubMed  CAS  Google Scholar 

  • IEA (2004) Biofuels for transport: an international perspective. International Energy Agency, Paris

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Wang Q, Zhang H, Qi Q (2008) Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 79:203–208

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101:7675–7678

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13:617–627

    Article  PubMed  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenerg 34:1914–1921

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Holmes B, Simmons BA, Blanch HW (2011) Biofuel economics in plant biomass conversion. Wiley, New York, pp 329–354

    Google Scholar 

  • Krömer JO, Wittmann C, Schröder H, Heinzle E (2006) Metabolic pathway analysis for rational design of l-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8:353–369

    Article  PubMed  Google Scholar 

  • Kummel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinform 7:512. doi:510.1186/1471-2105-1187-1512

    Article  Google Scholar 

  • Kurian JV (2005) A new polymer platform for the future—Sorona(R) from corn derived 1,3-propanediol. J Polym Environ 13:159–167

    Article  CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Chang HN (1993) High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnol Lett 15:971–974

    Article  CAS  Google Scholar 

  • Lee SH, Park S, Lee S, Hong S (2008) Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 79:633–641

    Article  PubMed  CAS  Google Scholar 

  • Li R, Chen Q, Wang P, Qi Q (2007a) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Li R, Zhang H, Qi Q (2007b) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Ouyang SP, Chung A, Wu Q, Chen GQ (2007) Microbial production of R-3-hydroxybutyric acid by recombinant E.coli harboring genes of phbA, phbB, and tesB. Appl Microbiol Biotechnol 76:811–818

    Article  PubMed  CAS  Google Scholar 

  • Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KL (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595

    Article  PubMed  CAS  Google Scholar 

  • Moon TS, Dueber JE, Shiue E, Prather KLJ (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305

    Article  PubMed  CAS  Google Scholar 

  • Naik S, Gopal SKV, Somal P (2008) Bioproduction of polyhydroxyalkanoates from bacteria: a metabolic approach. World J Microb Biot 24:2307–2314

    Article  CAS  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    PubMed  CAS  Google Scholar 

  • Park JH, Lee SY (2010) Metabolic pathways and fermentative production of l-aspartate family amino acids. Biotechnol J 5:560–577

    Article  PubMed  CAS  Google Scholar 

  • Park S-D, Lee J-Y, Sim S-Y, Kim Y, Lee H-S (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9:327–336

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Crank M, Dornburg V, Hermann B, Roes L, Hüsing B, Overbeek L, Terragni F,Recchia E (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources—the potential of white biotechnology. European Commission

  • Penloglou G, Chatzidoukas C, Kiparissides C (2011) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotech Adv. doi:10.1016/j.biotechadv.2011.1006.1021

  • Peters D (2006) Carbohydrates for fermentation. Biotechnol J 1:806–814

    Article  PubMed  CAS  Google Scholar 

  • Prather KL, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19:468–474

    Article  PubMed  Google Scholar 

  • Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32:1144–1155

    Article  CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  PubMed  CAS  Google Scholar 

  • Shukla VB, Zhou S, Yomano LP, Shanmugam KT, Preston JF, Ingram LO (2004) Production of d-lactate from sucrose and molasses. Biotechnol Lett 26:689–693

    Article  PubMed  CAS  Google Scholar 

  • Solaiman D, Ashby R, Foglia T, Marmer W (2006) Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  Google Scholar 

  • Steinbüchel A, Aerts K, Babel W, Follner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Furst U, Pries A, Valentin HE et al (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41(1):94–105

    Article  PubMed  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Aden A (2009) The economics of current and future biofuels. In Vitro Cell Dev Biol 45:199–217

    Google Scholar 

  • Van Wegen RJ, Ling Y, Middelberg APJ (1998) Industrial production of polyhydroxyalkanoates using Escherichia coli: an economic analysis. Chem Eng Res Des 76:417–426

    Article  Google Scholar 

  • Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Vickers CE, Blank LM, Kromer JO (2010) Chassis cells for industrial biochemical production. Nat Chem Biol 6:875–877

    Article  PubMed  CAS  Google Scholar 

  • von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930–1931

    Article  Google Scholar 

  • von Sivers M, Zacchi G, Olsson L, Hahn-Hügerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Progr 10:555–560

    Article  Google Scholar 

  • Wang F, Lee S (1997) Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia col. Appl Environ Microbiol 63:4765–4769

    PubMed  CAS  Google Scholar 

  • Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, Kim S-W (2011a) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhu J, Bennett GN, San KY (2011b) Succinate production from sucrose by metabolic engineered Escherichia coli strains under aerobic conditions. Biotechnol Prog 27:1242–1247

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO (2011c) Overexpression of NADH-dependent oxidoreductase fucO increases furfural tolerance in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microbiol 77:5132–5140

    Article  PubMed  CAS  Google Scholar 

  • Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) TECHNOLOGY UPDATE: development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163

    Article  CAS  Google Scholar 

  • Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Tech 110:831–840

    Article  CAS  Google Scholar 

  • Winkler J, Rehmann M, Kao K (2010) Novel Escherichia coli hybrids with enhanced butanol tolerance. Biotechnol Lett 32:915–920

    Article  PubMed  CAS  Google Scholar 

  • Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. J Ferment Bioeng 79:506–508

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351

    Article  CAS  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  PubMed  CAS  Google Scholar 

  • Yomano L, York S, Zhou S, Shanmugam K, Ingram L (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Jantama K, Moore J, Shanmugam K, Ingram L (2007) Production of l-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) l-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Iverson A, Grayburn W (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CEV was supported by a Queensland State Government Smart Futures Fellowship and the Queensland State Government National and International Research Alliance Program. The work of DKM was partly funded by the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia E. Vickers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10529_2011_821_MOESM1_ESM.pdf

Metabolic network of Escherichia coli modified from Krömer et al. (2006) by addition of respective product pathways identified in KEGG (Kanehisa and Goto 2000). Central carbon metabolism and biomass formation are given. The network is ready to be extended by new production pathways. The syntax is compatible with Metatool 5.1 (http://pinguin.biologie.uni-jena.de/bioinformatik/networks/). (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickers, C.E., Klein-Marcuschamer, D. & Krömer, J.O. Examining the feasibility of bulk commodity production in Escherichia coli . Biotechnol Lett 34, 585–596 (2012). https://doi.org/10.1007/s10529-011-0821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0821-3

Keywords

Navigation