Skip to main content
Log in

Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A thermophilic esterase, SsoPEst, from Sulfolobus solfataricus P2 was cloned and expressed in E. coli AD494 (DE3). Gene sequencing indicated the encoded 353 amino acids had less than 32% identity with reported esterases. The recombinant enzyme hydrolyzed p-nitrophenyl esters but not tributyrin or tricaprylin, exhibiting the highest specific activity (1.1 U/mg) with p-nitrophenyl caprylate. The enzyme was optimally active at pH 5.5 and 80°C. It retained 50% activity after 1 h incubation at 80°C. Activity was significantly inhibited by PMSF. Five SsoPEst mutants were generated by site-directed mutagenesis. One mutant had a higher specific activity of 2.8 U/mg at 37°C and 14 U/mg at 80°C than the wild-type enzyme which exhibited 0.7 U/mg at 37°C and 3.8 U/mg at 80°C against p-nitrophenyl butyrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Byun JS, Rhee JK, Kim ND, Yoon J, Kim DU, Koh E, Oh JW, Cho HS (2007) Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct Biol 7:11

    Article  CAS  Google Scholar 

  • De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M, Pedone C (2001) The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J Mol Biol 314:507–518

    Article  PubMed  CAS  Google Scholar 

  • De Simone G, Menchise V, Alterio V, Mandrich L, Rossi M, Manco G, Pedone C (2004) The crystal structure of an EST2 mutant unveils structural insights on the H group of the carboxylesterase/lipase family. J Mol Biol 343:137–146

    Article  PubMed  CAS  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Fojan P, Jonson PH, Petersen MT, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK (2002) Expression and characterization of Ca2+-independent lipase from Bacillus pumilus B26. Biochim Biophys Acta Mol Cell Biol Lipids 1583:205–212

    Article  CAS  Google Scholar 

  • Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M (1998) Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem J 332:203–212

    CAS  PubMed  Google Scholar 

  • Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, Manco G (2005) Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J Mol Biol 345:501–512

    Article  CAS  PubMed  Google Scholar 

  • Morana A, Di Prizito N, Aurilia V, Rossi M, Cannio R (2002) A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Gene 283:107–115

    Article  CAS  PubMed  Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Chinese Academy of Sciences Foundation (No. KSCX2-YW-G-017) and National 863 Program (No. 2006AA020203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Feng Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, YS., Zhang, XE., Wang, XD. et al. Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2. Biotechnol Lett 32, 1151–1157 (2010). https://doi.org/10.1007/s10529-010-0274-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0274-0

Keywords

Navigation