Skip to main content
Log in

Stress responses to heterologous membrane protein expression in Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The stress response of E. coli to the expression of two recombinant membrane proteins, the E. coli AAA+ protease FtsH and the human G-protein coupled receptor CB1, was examined using several members of a promoter-GFP library. Several genes from the heat-shock and envelope stress regulons (rpoH, clpP, lon, and ftsH) were strongly induced by expression of either membrane protein. Flow cytometry was used to monitor the real-time dynamics of the transcription of these reporter genes in response to membrane protein expression. Co-expression of CB1 and FtsH led to an additive response in these four reporter genes suggesting that the stresses may be occurring via different physiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartfai T, Benovic JL, Bockaert J et al (2004) The state of GPCR research in 2004. Nat Rev Drug Discov 3:574–626

    Google Scholar 

  • Cha HJ, Srivastava R, Vakharia VM, Rao G, Bentley WE (1999) Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl Environ Microbiol 65:409–414

    PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Daley DO, Rapp M, Granseth E et al (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323

    Article  PubMed  CAS  Google Scholar 

  • Funabashi H, Haruyama T, Mie M et al (2002) Non-destructive monitoring of rpoS promoter activity as stress marker for evaluating cellular physiological status. J Biotechnol 95:85–93

    Article  PubMed  CAS  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  PubMed  CAS  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose P-Bad promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  Google Scholar 

  • Harle C, Kim I, Angerer A, Braun V (1995) Signal transfer through 3 compartments—transcription initiation of the Escherichia coli ferric citrate transport-system from the cell-surface. EMBO J 14:1430–1438

    PubMed  CAS  Google Scholar 

  • Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231

    Article  PubMed  CAS  Google Scholar 

  • Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods 48:43–51

    Article  PubMed  CAS  Google Scholar 

  • Kundu TK, Kusano S, Ishihama A (1997) Promoter selectivity of Escherichia coli RNA polymerase sigma(F) holoenzyme involved in transcription of flagellar and chemotaxis genes. J Bacteriol 179:4264–4269

    PubMed  CAS  Google Scholar 

  • Link AJ, Skretas G, Strauch EM, Chari NS, Georgiou G (2008) Efficient expression of membrane-integrated and detergent-soluble G protein-coupled receptors in E. coli. Protein Sci 17:1857–1863

    Article  PubMed  CAS  Google Scholar 

  • Lu CH, Albano CR, Bentley WE, Rao GV (2005) Quantitative and kinetic study of oxidative stress regulons using green fluorescent protein. Biotechnol Bioeng 89:574–587

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Phillips PC, Otto SP, Whitlock MC (2000) Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects in epistasis and the evolutionary process. Oxford University Press, New York

    Google Scholar 

  • Rasmussen SGF, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  • Reitzer L, Schneider BL (2001) Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444

    Article  PubMed  CAS  Google Scholar 

  • Ruiz N, Silhavy TJ (2005) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126

    Article  PubMed  CAS  Google Scholar 

  • Santini CL, Bernadac A, Zhang M et al (2001) Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164

    Article  PubMed  CAS  Google Scholar 

  • Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Gamer J, Bukau B et al (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma(32). EMBO J 14:2551–2560

    PubMed  CAS  Google Scholar 

  • Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Baars L, Ytterberg AJ et al (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550

    Article  PubMed  CAS  Google Scholar 

  • Wang QP, Kaguni JM (1989) A novel sigma-factor is involved in expression of the Rpoh gene of Escherichia coli. J Bacteriol 171:4248–4253

    PubMed  CAS  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigma(S)-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Zaslaver A, Bren A, Ronen M et al (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Liu MZ, Burgess RR (2005) The global transcriptional response of Escherichia coli to induced sigma(32) protein involves sigma(32) regulon activation followed by inactivation and degradation of sigma(32) in vivo. J Biol Chem 280:17758–17768

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Princeton University startup funds and by the Lidow Senior Thesis fund. The authors thank Dr. Eva-Maria Strauch (University of Washington) for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. James Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L.Y., James Link, A. Stress responses to heterologous membrane protein expression in Escherichia coli . Biotechnol Lett 31, 1775–1782 (2009). https://doi.org/10.1007/s10529-009-0075-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0075-5

Keywords

Navigation