Skip to main content
Log in

Development of a simple and low cost microbioreactor for high-throughput bioprocessing

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A simple microbioreactor for high-throughput bioprocessing made from low cost polymer polytetrafluoroethylene (PTFE) tubes with a working volume of 1.5 ml is described. We have developed a microfluidic system that handles a small population of cells of a model microorganism, Pseudomonas aeruginosa DS10-129. Under the conditions of the microbioreactor, the organism produced extracellular secondary metabolites by using nutrient broth modified with glycerol. Pyocyanins were isolated from the fermented medium as a metabolite of interest. Antibiotic properties of pyocyanin were effective against a number of microorganisms such as Staphylococcus aureus, S. epidermis, Bacillus subtilis, Micrococcus luteus and Saccharomyces cerevisiae. Batch fermentation of the model organism in the microbioreactor was compared to shake-flask and conventional bench fermenter methods. Results obtained from the microbioreactor compared favourably with the conventional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baron SS, Rowe JJ (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814–820

    PubMed  CAS  Google Scholar 

  • Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57

    Article  PubMed  CAS  Google Scholar 

  • Costerton W, Anwar H (1994) Pseudomonas aeruginosa: the microbe and pathogen. In: Baltch AL, Smith RP (eds) Pseudomonas aeruginosa infections and treatment. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun 52:263–270

    PubMed  CAS  Google Scholar 

  • Ferguson D, Cahill OJ, Quilty B (2007) Phenotypic, molecular and antibiotic resistance profiling of nasocomial Pseudomonas aeruginosa strains isolated from two Irish hospitals. J Med 1:1–15

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Hassan HM, Fridovich I (1980) Mechanism of the antibiotic action of pyocyanin. J Bacteriol 141:156–163

    PubMed  CAS  Google Scholar 

  • Kostov Y, Harms P, Randers-Eichhorn L, Rao G (2001) Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 72:346–352

    Article  PubMed  CAS  Google Scholar 

  • Lamping SR, Zhang H, Allen B, Ayazi Shamlou P (2003) Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 58:747–758

    Article  CAS  Google Scholar 

  • Lederberg J (ed) (2000) Encyclopedia of microbiology, 2nd edn. Academic Press, San Diego, USA, pp 876–891

    Google Scholar 

  • McDaniel LE, Bailey EG (1969) Effect of shaking speed and type of closure on shake-flask cultures. Appl Environ Microbiol 17:286–290

    CAS  Google Scholar 

  • Minas G, Wolffenbuttel RF, Correia JH (2005) A lab-on-a-chip for spectrophotometric analysis of biological fluids. Lab Chip 5:1303–1309

    Article  PubMed  CAS  Google Scholar 

  • Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H, Ladner JE (2007) Structural and functional analysis of the pyocyanins: biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry-US 46:1821–1828

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactants production by strains of Pseudomonas aeruginosa using low cost raw materials. Biotechnol Progr 18:1277–1281

    Article  CAS  Google Scholar 

  • Reszka KJ, O’Malley Y, McCormick ML, Denning GM, Britigan BE (2004) Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase and hydrogen peroxide. Free Radic Bio Med 36:1448–1459

    Article  CAS  Google Scholar 

  • Reszka KJ, Dening GM, Britigan BE (2006) Photosensitized oxidation and inactivation of pyocyanins, a virulence factor of Pseudomonas aeruginosa. Photochem Photobiol 82:466–473

    Article  PubMed  CAS  Google Scholar 

  • Schultz JS (1964) Cotton closure as an aeration barrier in shaken flask fermentations. Appl Environ Microbiol 12:305–310

    CAS  Google Scholar 

  • Steinhaus B, Garcia ML, Shen AQ, Angenent LT (2007) A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl Environ Microbiol 73:1653–1658

    Article  PubMed  CAS  Google Scholar 

  • Von Saltza MH, Last JA, Stapleton PG, Rathnum ML, Neidleman SL (1969) Cyanomycin, its identity with pyocyanine. J Antibiot (Tokyo) 22:49–54

    Google Scholar 

  • Vukomanovic DV, Zoutman DE, Stone JA, Marks GS, Brien JF, Nakatsu K (1997) Electrospray mass-spectrometric, spectrophotometric and electrochemical methods do not provide evidence for the binding of nitric oxide by pyocyanine at pH 7. Biochem J 322:25–29

    PubMed  CAS  Google Scholar 

  • Waksman SA, Woodruff HB (1942) Selective antibiotic action of various substances of microbialorigin. J Bacteriol 44:373–384

    PubMed  CAS  Google Scholar 

  • Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10:584–591

    Article  PubMed  CAS  Google Scholar 

  • Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Haswell SJ (2007) Micro-fluidic and lab-on-a-chip technology. In: Seeberger PH, Blume T (eds) New avenues to efficient chemical synthesis emerging technologies. Springer, Berlin, Heidelberg, pp 21–37

    Chapter  Google Scholar 

  • Zhang Z, Perozziello G, Boccazzi P, Sinskey AJ, Geschke O, Jensen KF (2007) Microbioreactors for bioprocess development. J Assoc Lab Automat 12:143–151

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the University of Teesside sponsored Research and Enterprise Development Fund and Higher Education Innovation Fund (HEIF) for their support towards the completion of this project. Pattanathu K. S. M. Rahman wish to thank UK-Bioscience for Business KTN for the award of FROPTOP fund to further explore the biocatalytic study of biosurfactant production from renewable resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattanathu K. S. M. Rahman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Infrared spectrum of pyocyanin from P. aeruginosa DS10-129 culture grown in microbioreactor. Aliphatic chain stretching and bending (2990–2800, 1470–1350 cm−1), Aromatic compound C=C stretching vibrations (1600–1500 cm−1), C–O stretching (1320 cm−1), Medium band stretching of C–N (1250–1000 cm−1) (docx 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, P.K.S.M., Pasirayi, G., Auger, V. et al. Development of a simple and low cost microbioreactor for high-throughput bioprocessing. Biotechnol Lett 31, 209–214 (2009). https://doi.org/10.1007/s10529-008-9853-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9853-8

Keywords

Navigation