Skip to main content
Log in

Conjugal transfer using the bacteriophage ϕC31 att/int system and properties of the attB site in Streptomyces ambofaciens

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

To facilitate molecular genetic studies of Streptomyces ambofaciens that produces spiramycin, a commercially important macrolide antibiotic used in human medicine against Gram-positive pathogenic bacteria, the conditions for the conjugal transfer of DNA from E. coli to S. ambofaciens were established using a bacteriophage ϕC31 att/int system. The transconjugation efficiency of S. ambofaciens varied with the medium used; the highest frequency was obtained on AS-1 medium containing 10 mM MgCl2 without heat treatment of the spores. In addition, by cloning and sequencing the attB site, we identified that S. ambofaciens contains a single attB site within an ORF coding for a pirin homolog, and its attB site sequence shows 100% nt identity to the sequence of S. coelicolor and S. lividans, which have the highest efficiency in transconjugation using the ϕC31 att/int system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey CR, Winstanley DJ (1986) Inhibition of restriction in Streptomyces clavuligerus by heat treatment. J Gen Microbiol 132:2945–2947

    PubMed  CAS  Google Scholar 

  • Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–82

    Article  PubMed  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Choi SU, Lee CK, Hwang YI, Kinoshita H, Nihira T (2004) Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181:294–298

    Article  PubMed  CAS  Google Scholar 

  • Engel P (1987) Plasmid transformation of Streptomyces tendae after heat attenuation of restriction. Appl Environ Microbiol 53:1–3

    PubMed  CAS  Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  PubMed  CAS  Google Scholar 

  • Fouces R, Rodríguez M, Mellado E, Díez B, Barredo JL (2000) Conjugation and transformation of Streptomyces species by tylosin resistance. FEMS Microbiol Lett 186:319–325

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • MacNeil DJ (1988) Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170:5607–5612

    PubMed  CAS  Google Scholar 

  • Matsushima P, Baltz RH (1985) Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J Bacteriol 163:180–185

    PubMed  CAS  Google Scholar 

  • Matsushima P, Broughton MC, Turner JR, Baltz RH (1994) Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene 146:39–45

    Article  PubMed  CAS  Google Scholar 

  • Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585

    PubMed  CAS  Google Scholar 

  • Motamedi H, Shafiee A, Cai SJ (1995) Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160:25–31

    Article  PubMed  CAS  Google Scholar 

  • Paranthaman S, Dharmalingam K (2003) Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl Environ Microbiol 69:84–91

    Article  PubMed  CAS  Google Scholar 

  • Richardson MA, Kuhstoss S, Huber ML, Ford L, Godfrey O, Turner JR, Rao RN (1990) Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J Bacteriol 172:3790–3798

    PubMed  CAS  Google Scholar 

  • Smokvina T, Mazodier P, Boccard F, Thompson CJ, Guerineau M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94:53–59

    Article  PubMed  CAS  Google Scholar 

  • Stegmann E, Pelzer S, Wilken K, Wohlleben W (2001) Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417-CF17, the ethylenediaminedisuccinic acid producer. J Biotechnol 92:195–204

    Article  PubMed  CAS  Google Scholar 

  • Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N (1998) Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett 162:47–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Kyungnam University Foundation Grant, 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Uk Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MK., Ha, HS. & Choi, SU. Conjugal transfer using the bacteriophage ϕC31 att/int system and properties of the attB site in Streptomyces ambofaciens . Biotechnol Lett 30, 695–699 (2008). https://doi.org/10.1007/s10529-007-9586-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9586-0

Keywords

Navigation