Skip to main content
Log in

Biological preservation of plant derived animal feed with antifungal microorganisms: safety and formulation aspects

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

During storage of moist animal feed, growth of detrimental fungi causing spoilage, or being mycotoxigenic or pathogenic, is a severe problem. Addition of biopreservative yeasts or lactic acid bacteria can significantly reduce this problem. However, their use requires several careful considerations. One is the safety to the animal, humans and the environment, tightly connected to legal aspects and the need for pre-market authorisation when supplementing feed with microorganisms. Although both yeasts and lactic acid bacteria are considered comparatively safe organisms due to low production of toxic metabolites, it is of great importance to understand the mechanisms behind the biopreservative abilities. Another important issue concerns practical aspects, such as the economic production of large amounts of the organisms and the development of a suitable formulation giving the organisms a long shelf life. These aspects are discussed and a recommendation of this review is that both safety and formulation aspects of a specific microbe should be considered at an early stage in the selection of new organisms with biopreservation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abadias M, Teixido N, Usall J, Solsona C, Vinas I (2005) Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydration by spray-drying. Biocontrol Sci Technol 15:835–846

    Article  Google Scholar 

  • Abadias M, Usall J, Teixido N, Vinas I (2003) Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology 93:436–442

    Article  Google Scholar 

  • Bayrock D, Ingledew WM (1997) Fluidized bed drying of baker’s yeast: moisture levels, drying rates, and viability changes during drying. Food Res Int 30:407–415

    Article  Google Scholar 

  • Clevström G, Möller T, Göransson B, Liljensjöö A, Ljunggren H (1989) Influence of formic acid on fungal flora of barley and on aflatoxin production in Aspergillus flavus Link. Mycopathologia 107:101–109

    Article  PubMed  Google Scholar 

  • Costa E, Teixido N, Usall J, Fons E, Gimeno V, Delgado J, Vinas I (2002) Survival of Pantoea agglomerans strain CPA-2 in a spray-drying process. J Food Prot 65:185–191

    PubMed  CAS  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  CAS  Google Scholar 

  • De Clercq D, Cognet S, Pujol M, Lepoivre P, Jijakli MH (2003) Development of a SCAR marker and a semi-selective medium for specific quantification of Pichia anomala strain K on apple fruit surfaces. Postharvest Biol Tech 29:237–247

    Article  CAS  Google Scholar 

  • Druvefors U, Jonsson N, Boysen ME, Schnürer J (2002) Efficacy of the biocontrol yeast Pichia anomala during long-term storage of moist feed grain under different oxygen and carbon dioxide regimens. FEMS Yeast Res 2:389–394

    PubMed  CAS  Google Scholar 

  • Druvefors UÄ, Passoth V, Schnürer J (2005) Nutrient effect on biocontrol of Penicillium roqueforti by Pichia anomala J121 in cereal grain. Appl Environ Microbiol 71:1865–1869

    Article  PubMed  CAS  Google Scholar 

  • Fonseca F, Passot S, Lieben P, Marin M (2004) Collapse temperature of bacterial suspensions: the effect of cell type and concentration. Cryoletters 25:425–434

    PubMed  Google Scholar 

  • Garcia De Castro A, Bredholt H, Strom AR, Tunnacliffe A (2000) Anhydrobiotic engineering of gram-negative bacteria. Appl Environ Microbiol 66:4142–4144

    Article  PubMed  CAS  Google Scholar 

  • Hermosa MR, Grondona I, Diaz-Minguez JM, Iturriaga EA, Monte E (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soil borne fungal plant pathogens. Cur Genet 38:343–350

    Article  CAS  Google Scholar 

  • Hohmann S, Mager WH (2003) Yeast stress reponses. Springer-Verlag Heidelberg

  • Jijakli MH, Lepoivre P (1998) Characterization of an exo-beta-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    Article  CAS  Google Scholar 

  • Kabak B, Dobson ADW, Var I (2006) Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46:593–619

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study, 4th edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Lelieveld HLM, Bachmayer H, Boon B, Brunius G et al (1995) Safe Biotechnology.6. Safety assessment, in respect of human health, of microorganisms used in Biotechnology. Appl Microbiol Biotech 43:389–393

    Article  CAS  Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 87:149–163

    Article  CAS  Google Scholar 

  • List of GRAS approved substances (2006) Food and drug administration USA. http://www.cfsan.fda.gov/∼rdb/opa-gras.html

  • Luna-Solano G, Salgado-Cervantes MA, Rodriguez-Jimenes GC, Garcia-Alvarado MA (2005) Optimization of brewer’s yeast spray drying process. J Food Engin 68:9–18

    Article  Google Scholar 

  • Magan N (2006) Mycotoxin contamination of food in Europe: early detection and prevention strategies. Mycopathologia 162:245–253

    Article  PubMed  CAS  Google Scholar 

  • Masih EI, Alie I, Paul B (2000) Can the grey mould disease of the grape-vine be controlled by yeast? FEMS Microbiol Let 189:233–237

    Article  CAS  Google Scholar 

  • Melin P, Håkansson S, Eberhard TH, Schnürer J (2006) Survival of the biocontrol yeast Pichia anomala after long-term storage in liquid formulations and different temperatures, assessed by flow cytometry. J Appl Microbiol 100:264–271

    Article  PubMed  CAS  Google Scholar 

  • Melin P, Håkansson S, Schnürer J (2007) Optimization of liquid and dry formulations of the biocontrol yeast Pichia anomala. Appl Microbiol Biotech 73:1008–1016

    Article  CAS  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying; a review. J Microbiol Met 66:183–193

    Article  CAS  Google Scholar 

  • Passoth V, Fredlund E, Druvefors UA, Schnurer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13

    Article  PubMed  CAS  Google Scholar 

  • Petersson S, Jonsson N, Schnürer J (1999) Pichia anomala as a biocontrol agent during storage of high-moisture feed grain under airtight conditions. Post Biol Tech 15:175–184

    Article  Google Scholar 

  • Petersson S, Schnürer J (1995) Biocontrol of mold growth in high moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae. Appl Environ Microbiol 61:1027–1032

    PubMed  CAS  Google Scholar 

  • Petersson S, Schnürer J (1998) Pichia anomala as a biocontrol agent of Penicillium roqueforti in high-moisture wheat, rye, barley, and oats stored under airtight conditions. Can J Microbiol 44:471–476

    Article  CAS  Google Scholar 

  • Pick E, Noren O, Nielsen V (1989) Energy consumption and input–output relations of field operations. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Roser B, Colaco C (1993) A sweeter way to fresher food. New Sci 138:24–28

    Google Scholar 

  • Schisler DA, Slininger RJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  Google Scholar 

  • Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    Article  CAS  Google Scholar 

  • Schoug S, Olsson J, Carlfors J, Schnürer J, Håkansson S (2006) Freeze-drying of Lactobacillus coryniformis Si3-effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 53:119–127

    Article  PubMed  CAS  Google Scholar 

  • Scudamore KA, Livesey CT (1998) Occurrence and significance of mycotoxins in forage crops and silage: a review. J Sci Food Agric 77:1–17

    Article  CAS  Google Scholar 

  • Skrobek A, Boss D, Defago G, Butt TM, Maurhofer M (2006) Evaluation of different biological test systems to assess the toxicity of metabolites from fungal biocontrol agents. Toxicology Let 161:43–52

    Article  CAS  Google Scholar 

  • Slininger PJ, VanCauwenberge JE, Bothast RJ, Weller DM, Thomashow LS, Cook R (1996) Effect of growth culture physiological state, metabolites, and formulation on the viability, phytotoxicity, and efficacy of the take-all biocontrol agent Pseudomonas fluorescens 2-79 stored encapsulated on wheat seeds. Appl Microbiol Biotech 45:391–398

    Article  CAS  Google Scholar 

  • Stortz GT, Hengge-Aronis R (2000) Bacterial stress responses. ASM Press, Washington

    Google Scholar 

  • Ström K, Schnürer J, Melin P (2005) Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol Let 246:119–124

    Article  CAS  Google Scholar 

  • Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  PubMed  CAS  Google Scholar 

  • Torres R, Usall J, Teixido N, Abadias M, Vinas I (2003) Liquid formulation of the biocontrol agent Candida sake by modifying water activity or adding protectants. J Appl Microbiol 94:330–339

    Article  PubMed  CAS  Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables—an emerging technology. An Rev Phytopath 27:425–441

    Google Scholar 

  • Wilson CL, Wisniewski ME, Biles CL, McLaughlin R, Chalutz E, Droby S (1991) Biological control of postharvest diseases of fruits and vegetables—alternatives to synthetic fungicides. Crop Prot 10:172–177

    Article  Google Scholar 

  • Yiannikouris A, Jouany JP (2002) Mycotoxins in feeds and their fate in animals: a review. Animal Res 51:81–99

    Article  CAS  Google Scholar 

  • Zhang SA, Schisler DA, Boehm MJ, Slininger PJ (2005) Carbon to nitrogen ratio and carbon loading of production media influence freeze-drying survival and biocontrol efficacy of Cryptococcus nodaensis OH 182.9. Phytopathology 95:626–631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), and by the Swedish Foundation for Strategic Environmental Research (MISTRA) by funding the research programme Domestication of Microorganisms (DOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Melin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melin, P., Sundh, I., Håkansson, S. et al. Biological preservation of plant derived animal feed with antifungal microorganisms: safety and formulation aspects. Biotechnol Lett 29, 1147–1154 (2007). https://doi.org/10.1007/s10529-007-9375-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9375-9

Keywords

Navigation