Skip to main content
Log in

Enzymatic lysis of microbial cells

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cell wall lytic enzymes are valuable tools for the biotechnologist, with many applications in medicine, the food industry, and agriculture, and for recovering of intracellular products from yeast or bacteria. The diversity of potential applications has conducted to the development of lytic enzyme systems with specific characteristics, suitable for satisfying the requirements of each particular application. Since the first time the lytic enzyme of excellence, lysozyme, was discovered, many investigations have contributed to the understanding of the action mechanisms and other basic aspects of these interesting enzymes. Today, recombinant production and protein engineering have improved and expanded the area of potential applications. In this review, some of the recent advances in specific enzyme systems for bacteria and yeast cells rupture and other applications are examined. Emphasis is focused in biotechnological aspects of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamitsch BF, Karner F, Hampel W (2003) Proteolytic activity of a yeast cell wall lytic Arthrobacter species. Lett Appl Microbiol 36:227–229

    PubMed  CAS  Google Scholar 

  • Ahmed K, Chohnan S, Ohashi H, Hirata T, Masaki T, Sakiyama F (2003) Purification, bacteriolytic activity and specificity of beta-lytic protease from Lysobacter sp. IB-9374. J Biosci Bioeng 95:27–34

    PubMed  Google Scholar 

  • Aminlari M, Ramezani R, Jadidi F (2005) Effect of Maillard-based conjugation with dextran on the functional properties of lysozyme and casein. J Sci Food Agric 85:2617–2624

    Article  CAS  Google Scholar 

  • Archer DB, Jeenes DJ, MacKenzie DA, Brightwel G, Lambert N, Lowe G, Radford SE, Dobson CM (1990) Hen egg white lysozyme expressed in, and secreted from Aspergillus niger is correctly processed and folded. Bio/Technol 8:741–745

    Article  CAS  Google Scholar 

  • Asenjo JA, Ventom AM, Huang R-B, Andrews BA (1993) Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Bio/Technol 11:214–217

    Article  CAS  Google Scholar 

  • Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366–377

    CAS  Google Scholar 

  • Chohnan S, Nonaka J, Teramoto K, Taniguchi K, Kameda Y, Tamura H, Kurusu Y, Norioka S, Masaki T, Sakiyama F (2002) Lysobacter strain with high lysyl endopeptidase production. FEMS Microbiol Lett 213:13–20

    Article  PubMed  CAS  Google Scholar 

  • Conway J, Gaudreau H, Champagne CP (2001) The effect of the addition of proteases and glucanases during yeast autolysis on the production and properties of yeast extracts. Can J Microbiol 47:18–24

    Article  PubMed  CAS  Google Scholar 

  • de Ruyter PGGA, Kuipers OP, Meijer WC, de Vos WM (1997) Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979

    Article  PubMed  Google Scholar 

  • Donovan DM, Kerr DE, Wall RJ (2005) Engineering disease resistant cattle. Transgenic Res 14:563–567

    Article  PubMed  CAS  Google Scholar 

  • Ezaki T, Saidi SM, Liu SL, Hashimoto Y, Yamamoto H, Yabuuchi E (1990) Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 55:127–130

    Article  PubMed  CAS  Google Scholar 

  • Ferrer P (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: a review. Microb Cell Fact DOI 10.1186/1475-2859-5-10

  • Ferrer P, Halkier T, Hedegaard L, Savya D, Diers I, Asenjo JA (1996) Nucleotide sequence of a β(1→3) glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. J Bacteriol 178:4751–4757

    PubMed  CAS  Google Scholar 

  • Fischetti VA (2003) Novel method to control pathogenic bacteria on human mucous membranes. Ann N Y Acad Sci 987:207–214

    Article  PubMed  CAS  Google Scholar 

  • Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496

    Article  PubMed  CAS  Google Scholar 

  • Foster SJ (1995) Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177:5723–5725

    PubMed  CAS  Google Scholar 

  • Gacto M, Vicente-Soler J, Cansado J, Villa TG (2000) Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J Appl Microbiol 88:961–967

    Article  PubMed  CAS  Google Scholar 

  • Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958

    Article  PubMed  CAS  Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90:754–760

    Article  PubMed  CAS  Google Scholar 

  • Gyamerah M, Merichetti G, Adedayo O, Scharer J, Moo-Young M (2002) Bioprocessing strategies for improving hen egg-white lysozyme (HEWL) production by recombinant Aspergillus niger HEWL WT-13–16. Appl Microbiol Biotechnol 60:403–407

    Article  PubMed  CAS  Google Scholar 

  • Iacono VJ, Zove SM, Grossbard BL, Pollock JJ, Fine DH, Greene LS (1985) Lysozyme-mediated aggregation and lysis of the periodontal microorganism Capnocytophaga gingivalis 2010. Infect Immun 47:457–464

    PubMed  CAS  Google Scholar 

  • Ibrahim HR, Kato A, Kobayashi K (1991) Antimicrobial effects of lysozyme against Gram-negative bacteria due to covalent binding of palmitic acid. J Agric Food Chem 39:2077–2082

    Article  CAS  Google Scholar 

  • Ibrahim HR, Yamada M, Matsushita K, Kobayashi K, Kato A (1994) Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. J Biol Chem 269:5059–5063

    PubMed  CAS  Google Scholar 

  • Ibrahim HR, Matsuzaki T, Aoki T (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett 506:27–32

    Article  PubMed  CAS  Google Scholar 

  • Jamas S, Rha CK, Sinskey AJ (1986) Morphology of yeast cell wall as affected by genetic manipulation of β(1-6) glycosidic linkage. Biotechnol Bioeng 28:769–784

    Article  CAS  PubMed  Google Scholar 

  • Kerr DE, Wellnitz O (2003) Mammary expression of new genes to combat mastitis. J Anim Sci 81:38–47

    PubMed  CAS  Google Scholar 

  • Kitamura K (1982) A high yeast cell wall lytic enzyme-producing mutant of Arthrobacter luteus. J Ferment Technol 60:253–256

    CAS  Google Scholar 

  • Kitamura K, Yamamoto Y (1972) Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys 153:403–406

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi R, Miwa T, Yamamoto S, Nagasaki S (1981) Properties and mode of action of (β-1,3-glucanase from Rhizoctonia sp. J Ferment Technol 59:21–26

    CAS  Google Scholar 

  • Kobayashi R, Miwa T, Yamamoto S, Nagasaki S (1982) Preparation and evaluation of an enzyme which degrades yeast cell walls. Appl Microbiol Biotechnol 15:14–19

    Article  CAS  Google Scholar 

  • Koch AL (1998) Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. Res Microbiol 149:689–701

    Article  PubMed  CAS  Google Scholar 

  • Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. β (1-6)-glucan interconnects mannoprotein, β(1-3)-glucan and chitin. J Biol Chem 272:17762–17775

    Article  PubMed  CAS  Google Scholar 

  • Laible NJ, Germaine GR (1985) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun 48:720–728

    PubMed  CAS  Google Scholar 

  • Le Corre S, Andrews BA, Asenjo JA (1985) Use of a lytic enzyme system from Cytophaga sp. in the lysis of Gram-positive bacteria. Enzyme Microb Technol 7:73–78

    Article  CAS  Google Scholar 

  • Li S, Norioka S, Sakiyama F (1998) Bacteriolytic activity and specificity of Achromobacter beta-lytic protease. J Biochem (Tokyo) 124:332–339

    CAS  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    PubMed  CAS  Google Scholar 

  • Loessner MJ (2005) Bacteriophage endolysins-current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  PubMed  CAS  Google Scholar 

  • Loessner MJ, Schneider A, Scherer S (1996) Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl Environ Microbiol 62:3057–3060

    PubMed  CAS  Google Scholar 

  • Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  PubMed  CAS  Google Scholar 

  • Loffler J, Hebart H, Schumacher U, Reitze H, Einsele H (1997) Comparison of different methods for extraction of DNA of fungal pathogens from cultures and blood. J Clin Microbiol 35:3311–3312

    PubMed  CAS  Google Scholar 

  • Lopez R, Gonzalez MP, Garcia E, Garcia JL, Garcia P (2000) Biological roles of two new murein hydrolases of Streptococcus pneumoniae representing examples of module shuffling. Res Microbiol 151:437–443

    Article  PubMed  CAS  Google Scholar 

  • Mainwaring DO, Wiebe MG, Robson GD, Goldrick M, Jeenes DJ, Archer DB, Trinci AP (1999) Effect of pH on hen egg white lysozyme production and evolution of a recombinant strain of Aspergillus niger. J Biotechnol 75:1–10

    Article  PubMed  CAS  Google Scholar 

  • Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to food-borne vegetative bacteria. Crit Rev Microbiol 29:191–214

    PubMed  CAS  Google Scholar 

  • Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW (2001) Inactivation of Gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 67:339–344

    Article  PubMed  CAS  Google Scholar 

  • Masschalck B, Deckers D, Michiels CW (2002) Lytic and nonlytic mechanism of inactivation of Gram-positive bacteria by lysozyme under atmospheric and high hydrostatic pressure. J Food Prot 65:1916–1923

    PubMed  CAS  Google Scholar 

  • Niwa T, Kawamura Y, Katagiri Y, Ezaki TJ (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. Microbiol Methods 61:251–260

    Article  CAS  Google Scholar 

  • O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant Staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370

    Article  PubMed  CAS  Google Scholar 

  • Recsei PA, Gruss AD, Novick RP (1987) Cloning and sequence and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci USA 84:1127–1131

    Article  PubMed  CAS  Google Scholar 

  • Saeki K, Iwata J, Yamazaki S, Watanabe Y, Tamai Y (1994) Purification and characterization of a yeast lytic β-1,3-glucanase from Oerskovia xanthineolytica TK-1. J Ferment Bioeng 78:407–412

    Article  CAS  Google Scholar 

  • Salazar O, Molitor J, Lienqueo ME, Asenjo JA (2001) Overproduction, purification and characterization of β-1,3-glucanase type II in Escherichia coli. Protein Exp Purif 23:219–225

    Article  CAS  Google Scholar 

  • Salazar O, Basso C, Barba P, Orellana C, Asenjo JA (2006) Improvement of the lytic properties of a β-1,3-glucanase by directed evolution. Mol Biotechnol 33:211–220

    Article  PubMed  CAS  Google Scholar 

  • Sava G (1996) Pharmacological aspects and therapeutic applications of lysozymes. EXS 75:433–449

    PubMed  CAS  Google Scholar 

  • Schlörb C, Ackermann K, Richter C, Wirmer J, Schwalbe H (2005) Heterologous expression of hen egg white lysozyme and resonance assignment of tryptophan side chains in its non-native states. J Biomol NMR 33:95–104

    Article  PubMed  CAS  Google Scholar 

  • Scott JH, Schekman R (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414–423

    PubMed  CAS  Google Scholar 

  • Scott D, Hammer FE, Szalkucki TJ (1987) Bioconversions: enzyme technology. In: Knorr D (ed) Food biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Shen SH, Chrétien P, Bastien L, Slilaty SN (1991) Primary sequence of the glucanase gene from Oerskovia xanthineolytica. J Biol Chem 266:1058–1063

    PubMed  CAS  Google Scholar 

  • Shimoi H, Iimura Y, Obata T, Tadenuma M (1992) Molecular structure of Rarobacter faecitabidus protease I. A yeast-lytic serine protease having mannose-binding activity. J Biol Chem 267:25189–25195

    PubMed  CAS  Google Scholar 

  • Smith TJ, Blackman SA, Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262

    PubMed  CAS  Google Scholar 

  • Touch V, Hayakawa S, Fukada K, Aratani Y, Sun Y (2003) Preparation of antimicrobial reduced lysozyme compatible in food applications. J Agric Food Chem 51:5154–5161

    Article  PubMed  CAS  Google Scholar 

  • Ventom AM, Asenjo JA (1990) Two extracellular proteases from Oerskovia xanthineolytica LL-G109. J Biotechnol Tech 4:171–176

    CAS  Google Scholar 

  • Ventom AM, Asenjo JA (1991) Characterization of yeast lytic enzymes from Oerskovia xanthineolytica LL-G109. Enzyme Microb Technol 13:71–75

    Article  CAS  Google Scholar 

  • Wang IN, Smith DL, Young R (2000) Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825

    Article  PubMed  CAS  Google Scholar 

  • Yang YG, Tong Q, Hu TS, Qian YC, Yang SL, Gong Y (2000) The application of a novel lytic system to the recovery of recombinant proteins in E. coli. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32:211–216

    CAS  Google Scholar 

  • Zhang N, Gardner DCJ, Oliver SG, Stateva LI (1999) Genetically controlled cell lysis in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 64:607–615

    Article  PubMed  CAS  Google Scholar 

  • Zomer E, Er-El Z, Rokem JS (1987) Production of intracellular enzymes by enzymatic treatment of yeast. Enzyme Microb Technol 9:281–284

    Article  CAS  Google Scholar 

  • Zukaite V, Biziulevicius GA (2000) Acceleration of hyaluronidase production in the course of batch cultivation of Clostridium perfringens can be achieved with bacteriolytic enzymes. Lett Appl Microbiol 30:203–206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CONICYT (Project 1030797) and the Millennium Scientific Initiative (Millennium Institutes) (ICM-P99-031) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriana Salazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, O., Asenjo, J.A. Enzymatic lysis of microbial cells. Biotechnol Lett 29, 985–994 (2007). https://doi.org/10.1007/s10529-007-9345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9345-2

Keywords

Navigation