Skip to main content
Log in

Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis

  • Original Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Ribulose 5-phosphate is a precursor for riboflavin biosynthesis. Alteration of carbon flow into the pentose phosphate pathway will affect the availability of ribulose 5-phosphate and the riboflavin yield. We have modulated carbon flow in Bacillus subtilis through the gluconate bypass by over-expression of glucose dehydrogenase under the control of the constitutively expressed P43 promoter. Over-expression of glucose dehydrogenase resulted in low acid production (acetate and pyruvate). The substantial reduction in acid production is accompanied by increased riboflavin production and an increased rate of growth while glucose consumption remained unchanged. Metabolic analysis indicated that over-expression of glucose dehydrogenase increased intracellular pool of ribulose 5-phosphate. The high concentrations of ribulose 5-phosphate could explain the increased riboflavin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    PubMed  CAS  Google Scholar 

  • Bai DM, Zhao XM, Li XG, Xu SM (2004) Strain improvement of Rhizopus oryzae for over-production of l(+)-lactic acid and metabolic flux analysis of mutants. J Biochem Eng 18:41–48

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1984) Methods of enzymatic analysis, chapter 2. Verlag Chemie GmbH, Weinheim, Germany, pp 141–498

    Google Scholar 

  • Chen SHX, Chu J, Zhuang YP, Zhang SL (2005) Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate. Biotechnol Lett 27:689–692

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Chen X, Wang JG, Ban R, Zhao XM (2005) Effect of riboflavin operon dosage on riboflavin productivity in Bacillus subtilis. Trans Tianjin Univ 11:1–5

    CAS  Google Scholar 

  • Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wüthrich K, Hohmann HP, Sauer U, Bailey JE (2002) Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol 68:1760–1771

    Article  PubMed  CAS  Google Scholar 

  • Fisher SH, Mangasanik B (1984) Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. J Bacteriol 158:55–62

    PubMed  CAS  Google Scholar 

  • Fujita Y R, Ramaleyj R, Freese E (1977) Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J Bacteriol 132:282–293

    PubMed  CAS  Google Scholar 

  • Garrett RH, Grisham CM (1999) Biochemistry, 2nd edn. Saunders College Publishing, Fort Worth, TX, pp 742–774

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer-Verlag, New York, NY

    Google Scholar 

  • Karmazyn-Campelli C, Fluss L, Leighton T, Stragier P (1992) The spoIIN279(ts) mutation affects the FtsA protein of Bacillus subtilis. Biochimie 74:689–694

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau OV (1973) A flexible system of enzymatic analysis. Academic Press, Inc., New York, NY

    Google Scholar 

  • Moszer I, Jones LM, Moreira S, Fabry C, Danchin A (2002) SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res 30:62–65

    Article  PubMed  CAS  Google Scholar 

  • Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams II V, Rufo GA Jr, Hatch R, Pero J (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotech 22:8–18

    Article  CAS  Google Scholar 

  • Sadoff HL (1996) Methods in enzymology [M]. Academic Press, Inc., New York, NY

    Google Scholar 

  • Sauer U, Hatzimanikatis V, Hohmann HP, Manneberg M, Van Loon APGM, Bailey JE (1996) Physiology and metabolic fluxes of the wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol 62:3687–3696

    PubMed  CAS  Google Scholar 

  • Shimotsu H, Henner DJ (1986) Construction of a single-copy integration vector and its use in analysis of regulation of the trp Operon of Bacillus subtilis. Gene 43:85–94

    Article  PubMed  CAS  Google Scholar 

  • Van Loon APGM, Hohmann H-P, Bretzel W, Hu¨mbelin M, Pfister M (1996) Development of a fermentation process for the manufacture of riboflavin. Chimica 50:410–412

    Google Scholar 

  • Wang PZ, Doi RH (1984) Overlapping promoters transcribed by Bacillus subtilis sigma 55 and sigma 37 RNA polymerase holoenzymes during growth and stationary phases. J Biol Chem 259:8619–8625

    PubMed  CAS  Google Scholar 

  • Wolf RE Jr, Prather DM, Shea FM (1979) Growth-rate-dependent alteration of 6-phosogluconate and glucose-6-phosphate dehydrogenase levels in Escherichia coli K-12. J Bacteriol 139:1093–1096

    PubMed  CAS  Google Scholar 

  • Zamboni N, Fischer E, Laudert D, Aymerich S, Hohmann HP, Sauer U (2004) The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J␣Bacteriol 14:4528–4534

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC-20536040), the National Project of Key Foundamental Research (2003Cb716003) and the Development Project of Science and Technology of Tianjin (05YFGZGX04500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Chen, X., Chen, T. et al. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis . Biotechnol Lett 28, 1667–1672 (2006). https://doi.org/10.1007/s10529-006-9143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9143-2

Keywords

Navigation