Skip to main content
Log in

Development of a Fiber Optic Enzymatic Biosensor for 1,2-dichloroethane

  • Original Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

There is a significant need for devices capable of measuring water contaminant concentrations in situ––continuously, rapidly, and without reagents, extraction, or other pretreatment. Toward this goal, we constructed and tested fiber optic biosensors for measurement of 1,2-dichloroethane (DCA) in aqueous solutions. The biocomponent was the haloalkane dehalogenase, DhlA, in whole cells of Xanthobacter autotrophicus GJ10. These cells were immobilized in calcium alginate on the tip of a fiber optic fluoresceinamine-based pH optode. The resulting biosensor could quantify DCA at 11 mg/l and had a linear response up to at least 65 mg/l. Total signal change was reached in 8–10 min, and measurements were reproducible (SE <9%). The sensor’s small size, potential for remote operation, and low cost make it of interest for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreescu S, Sadik OA (2004) Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure Appl Chem 76:861–878

    Article  CAS  Google Scholar 

  • Arnold MA (1990) Fiberoptic biosensors. J Biotechnol 15:219–228

    Article  PubMed  CAS  Google Scholar 

  • Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal Bioanal Chem 377:434–445

    Article  PubMed  CAS  Google Scholar 

  • CEN (1991) Production profiles. Chem Eng News 69:30–31, 33

  • Chien FC, Chen SJ (2004) A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens Bioelectron 20:633–642

    Article  PubMed  CAS  Google Scholar 

  • Cooper J, Cass A (2004) Biosensors. Oxford University Press, Oxford

    Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  PubMed  CAS  Google Scholar 

  • Damborsky J, Rorije E, Jesenska A, Nagata Y, Klopman G, Peijnenburg WJGM (2001) Structure-specificity relationships for haloalkane dehalogenases. Environ Toxicol Chem 20:2681–2689

    Article  PubMed  CAS  Google Scholar 

  • Dennison MJ, Turner APF (1995) Biosensors for environmental monitoring. Biotech Adv 13:1–12

    Article  CAS  Google Scholar 

  • Gil GC, Kim YJ, Gu MB (2002) Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium. Biosens Bioelectron 17:427–432

    Article  PubMed  CAS  Google Scholar 

  • Henrysson T, Mattiasson B (1993) A microbial biosensor system for dihalomethanes. Biodegradation 4:101–105

    Article  PubMed  CAS  Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L, Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl Environ Microbiol 49:673–677

    PubMed  CAS  Google Scholar 

  • Kmunicek J, Luengo S, Gago F, Ortiz AR, Wade RC, Damborsky J (2001) Comparative binding energy analysis of the substrate specificity of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. Biochemistry 40:8905–8917

    Article  PubMed  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Lewis Publishers, Boca Raton

    Google Scholar 

  • Monk DJ, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931–945

    Article  PubMed  CAS  Google Scholar 

  • Munkholm C, Walt DR, Milanovich FP, Klainer SM (1986) Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement. Anal Chem 58:1427–1430

    Article  CAS  Google Scholar 

  • Müller C, Hitzmann B, Schubert F, Scheper T (1997) Optical chemo- and biosensors for use in clinical applications. Sens Actuators B 40:71–77

    Article  Google Scholar 

  • Neilson AH (1990) The biodegradation of halogenated organic-compounds - A review. J Appl Bacteriol 69:445–470

    PubMed  CAS  Google Scholar 

  • Peter J, Buchinger W, Karner F, Hampel W (1997a) Characteristics of a microbial assay for the detection of halogenated hydrocarbons using cells of an actinomycete-like organism as a biological component. Acta Biotechol 17:123–130

    Article  CAS  Google Scholar 

  • Peter J, Hutter W, Stöllnberger W, Hampel W (1996a) Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens Bioelectron 11:1215–1219

    Article  CAS  Google Scholar 

  • Peter J, Hutter W, Stöllnberger W, Hampel W (1996b) Detection of halogenated hydrocarbons by a microbial sensor system using a stop-flow technique. Biotechnol Tech 10:183–188

    Article  CAS  Google Scholar 

  • Peter J, Hutter W, Stöllnberger W, Karner F, Hampel W (1997b) Semicontinuous detection of 1,2-dichloroethane in water samples using Xanthobacter autotrophicus GJ 10 encapsulated in chitosan beads. Anal Chem 69:2077–2079

    Article  CAS  Google Scholar 

  • Rogers KR, Gerlach CL (1999) Update on environmental biosensors. Environ Sci Technol 33:500A–506A

    CAS  Google Scholar 

  • Schulze H, Vorlova S, Villatte F, Bachmann TT, Schmid RD (2003) Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 18:201–209

    Article  PubMed  CAS  Google Scholar 

  • Squillace PJ, Moran MJ, Price CV (2004) VOCs in shallow groundwater in new residential/commercial areas of the United States. Environ Sci Technol 38:5327–5338

    Article  PubMed  CAS  Google Scholar 

  • Zhujun Z, Zhang Y, Wangbai M, Russell R, Shakhsher ZM, Grant CL, Seitz WR, Sundberg DC (1989) Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors. Anal Chem 61:202–205

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Colorado Agricultural Experiment Station and the Colorado Institute for Research in Biotechnology. We also thank Dr. Dick B. Janssen for his generous donation of cultures of X. autotrophicus GJ10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth F. Reardon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, D.W., Müller, C. & Reardon, K.F. Development of a Fiber Optic Enzymatic Biosensor for 1,2-dichloroethane. Biotechnol Lett 28, 883–887 (2006). https://doi.org/10.1007/s10529-006-9014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9014-x

Key words

Navigation