Skip to main content
Log in

MiR-133b Modulates the Osteoblast Differentiation to Prevent Osteoporosis Via Targeting GNB4

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

MiR-133b is considered to be lowly expressed in osteoporosis patients. This study aimed to probe the role and in-depth mechanism of miR-133b in modulating osteoblast biological behavior and differentiation. The differential expressions of miR-133b and GNB4 in patients with osteoporosis and healthy control were analyzed based on the GEO database. Osteoblastic differentiation of hFOB 1.19 cells was induced in the culture medium containing 10 mM β-glycerophosphate, 50 nm dexamethasone, and 100 μg/ml ascorbic acid. The level of GNB4 was detected using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Western blot was also utilized to measure the levels of osteoblast-related proteins, including ALP, Runx2, Osterix, and OPN. GNB4 was identified and confirmed as a downstream target gene of miR-133b. The expression of miR-133b was declined while the expression of GNB4 was increased in osteoporosis patients. Importantly, up-regulation of miR-133b caused the increase of cell viability and the decrease of apoptosis, which could be blocked by overexpression of GNB4. Also, up-regulation of miR-133b promoted osteoblasts differentiation, as shown by the increase in the expression of ALP, Runx2, Osterix, and OPN. Similarly, this promoting impact resulted from miR-133b overexpression can be reversed via up-regulation of GNB4. These findings revealed that miR-133b can promote the viability and differentiation of osteoblasts by targeting GNB4, hoping to lay a feasible theoretical foundation for the clinical treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdallah BM, Kassem M (2012) New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50:540–545

    Article  CAS  Google Scholar 

  • Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T, Matsuguchi T (2010) Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 402:755–761

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  • Benjafield AV, Lin RC, Dalziel B, Gosby AK, Caterson ID, Morris BJ (2001) G-protein beta3 subunit gene splice variant in obesity and overweight. Int J Obes Relat Metab Disord 25:777–780

    Article  CAS  Google Scholar 

  • Cao FY, Fan JX, Long Y, Zeng X, Zhang XZ (2016) A smart fluorescence nanoprobe for the detection of cellular alkaline phosphatase activity and early osteogenic differentiation. Nanomedicine 12:1313–1322

    Article  CAS  Google Scholar 

  • Cauley JA (2017) Osteoporosis: fracture epidemiology update 2016. Curr Opin Rheumatol 29:150–156

    Article  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233

    Article  CAS  Google Scholar 

  • Chen J, Qiu M, Dou C, Cao Z, Dong S (2015) MicroRNAs in bone balance and osteoporosis. Drug Dev Res 76:235–245

    Article  CAS  Google Scholar 

  • Chen R, Liao X, Chen F, Wang B, Huang J, Jian G, Huang Z, Yin G, Liu H, Jin D (2018) Circulating microRNAs, miR-10b-5p, miR-328-3p, miR-100 and let-7, are associated with osteoblast differentiation in osteoporosis. Int J Clin Exp Pathol 11:1383–1390

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C (2018) Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107

    Article  CAS  Google Scholar 

  • Exton JH (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 36:481–509

    Article  CAS  Google Scholar 

  • Kahai S, Lee SC, Lee DY, Yang J, Li M, Wang CH, Jiang Z, Zhang Y, Peng C, Yang BB (2009) MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS ONE 4:e7535

    Article  Google Scholar 

  • Kiyoi T (2018) Bone resorption activity in mature osteoclasts. Methods Mol Biol 1868:215–222

    Article  CAS  Google Scholar 

  • Li Z, Hassan MQ, Volinia S, Van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911

    Article  CAS  Google Scholar 

  • Liu L, Zhang R (2014) Intermediate Charcot-Marie-Tooth disease. Neurosci Bull 30:999–1009

    Article  Google Scholar 

  • Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23:287–295

    Article  CAS  Google Scholar 

  • Lv H, Sun Y, Zhang Y (2015) MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Med Sci Monit 21:1527–1534

    Article  CAS  Google Scholar 

  • Lv L, Li Q, Chen S, Zhang X, Tao X, Tang X, Wang S, Che G, Yu Y, He L (2019) miR-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L. Exp Cell Res 385:111597

    Article  CAS  Google Scholar 

  • Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    Article  CAS  Google Scholar 

  • Pang XG, Cong Y, Bao NR, Li YG, Zhao JN (2018) Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor-mediated pathway. Biomed Res Int 2018:4178021

    PubMed  PubMed Central  Google Scholar 

  • Panizo S, Naves-Díaz M, Carrillo-López N, Martínez-Arias L, Fernández-Martín JL, Ruiz-Torres MP, Cannata-Andía JB, Rodríguez I (2016) MicroRNAs 29b, 133b, and 211 regulate vascular smooth muscle calcification mediated by high phosphorus. J Am Soc Nephrol 27:824–834

    Article  CAS  Google Scholar 

  • Papaioannou G, Mirzamohammadi F, Kobayashi T (2014) MicroRNAs involved in bone formation. Cell Mol Life Sci 71:4747–4761

    Article  CAS  Google Scholar 

  • Saddala MS, Lennikov A, Grab DJ, Liu GS, Tang S, Huang H (2018) Proteomics reveals ablation of PlGF increases antioxidant and neuroprotective proteins in the diabetic mouse retina. Sci Rep 8:16728

    Article  Google Scholar 

  • Sandhu SK, Hampson G (2011) The pathogenesis, diagnosis, investigation and management of osteoporosis. J Clin Pathol 64:1042–1050

    Article  CAS  Google Scholar 

  • Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC, Lu YC, Chien HJ, Liu TT, Chang MH, Lin KP et al (2013) Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet 92:422–430

    Article  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  CAS  Google Scholar 

  • Wang H, Sun Z, Wang Y, Hu Z, Zhou H, Zhang L, Hong B, Zhang S, Cao X (2016) miR-33-5p, a novel mechano-sensitive microRNA promotes osteoblast differentiation by targeting Hmga2. Sci Rep 6:23170

    Article  CAS  Google Scholar 

  • Wang QY, Zhou CX, Zhan MN, Tang J, Wang CL, Ma CN, He M, Chen GQ, He JR, Zhao Q (2018) MiR-133b targets Sox9 to control pathogenesis and metastasis of breast cancer. Cell Death Dis 9:752

    Article  Google Scholar 

  • Wang R, Zhang H, Ding W, Fan Z, Ji B, Ding C, Ji F, Tang H (2020) miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis 11:179

    Article  CAS  Google Scholar 

  • Wiser O, Jan LY (2010) G-protein regulation of channels. Springer, New York

    Book  Google Scholar 

  • Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S (2016) The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 8:1

    Google Scholar 

  • Yang L, Hou J, Cui XH, Suo LN, Lv YW (2017) MiR-133b regulates the expression of CTGF in epithelial-mesenchymal transition of ovarian cancer. Eur Rev Med Pharmacol Sci 21:5602–5609

    CAS  PubMed  Google Scholar 

  • Yu H, Lu Y, Li Z, Wang Q (2014) microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets 15:817–828

    Article  CAS  Google Scholar 

  • Zeng Q, Wang Y, Gao J, Yan Z, Li Z, Zou X, Li Y, Wang J, Guo Y (2019) miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett 24:11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiang Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gao, Z. & Gao, P. MiR-133b Modulates the Osteoblast Differentiation to Prevent Osteoporosis Via Targeting GNB4. Biochem Genet 59, 1146–1157 (2021). https://doi.org/10.1007/s10528-021-10048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10048-9

Keywords

Navigation