Skip to main content

Advertisement

Log in

Genetic Diversity of Tomistoma schlegelii Inferred from mtDNA Markers

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The genetic diversity of the endangered crocodile Tomistoma schlegelii was characterized using the protein coding ND 6-tRNAglu-cyt b and the cytochrome b-control region (cyt b-CR) markers. Concatenate data revealed six haplotypes with an overall haplotype diversity of 0.769 ± 0.039; nucleotide diversity was 0.00535 ± 0.00172. A nearest-neighbor analysis showed that all individuals clustered with four geographic regions (Sumatra, Peninsular Malaysia, Sarawak, and East Kalimantan) and were genetically differentiated. With the exception of the individuals from haplotype H2, which occurred in both Peninsular Malaysia and Sarawak, all other haplotypes were geographically distinct. The H4 lineage, which was found to be the most divergent, clustered exclusively in the basal clade in all phylogenetic trees, and the haplotype network was unconnected at the 95% reconnection limit, suggesting further investigation to establish its possible status as a distinct evolutionary significant unit or a cryptic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auliya M, Schwedick B, Sommerlad R, Brend S, Samedi (2006) A short-term assessment of the conservation status of Tomistoma schlegelii (Crocodylia: Crocodylidae) in Tanjung Puting National Park (Central Kalimantan, Indonesia). http//www.tomistoma.org. Accessed 29 March 2009

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Bezuijen MR, Webb GJW, Hartoyo P, Samedi, Ramoro WS, Manolis SC (1998) The false gharials (Tomistoma schlegelii) in Sumatra. Crocodiles, Proc 14th Working Meeting IUCN/SSC Crocodile Specialist Group, Gland

  • Bezuijen MR, Webb GJW, Hartoyo P, Samedi (2001) Peat swamp forest and the false gharial (Tomistoma schlegelii) in the Merang River, Eastern Sumatra, Indonesia. Oryx 35:301–307

    Google Scholar 

  • Bezuijen MR, Wibowo P, Wirawijaya H (2002) Proceedings of the 2002 false gharial workshop: assessment of the management and conservation of the Merang River as habitat for the false gharial. Wildlife Management International Pty. Limited/Wetlands International-Indonesia Program, Darwin and Palembang

    Google Scholar 

  • Bezuijen MR, Suryansyah, Huda I, Andriyono S, Pratihno P, Potess F, Sommerlad R (2004) False gharial (Tomistoma schlegelii) surveys in West Kalimantan, Indonesia, in 2004. http://tomistoma.org. Accessed 29 March 2009

  • Brochu CB (2003) Phylogenetic approaches toward crocodylian history. Annu Rev Earth Planet Sci 31:357–397

    Article  CAS  Google Scholar 

  • Burland TG (2000) DNAstar’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    PubMed  CAS  Google Scholar 

  • Cedeno-Vazquez JR, Rodriguez D, Calme S, Ross JP, Densmore LD, Thorbjarnarson J (2008) Hybridization between Crocodylus acutus and Crocodylus moreletti in the Yucatan Peninsula: I. Evidence from mitochondrial DNA and morphology. J Exp Zool 309A:661–673

    Article  CAS  Google Scholar 

  • Chong LK, Tan SG, Yusoff K, Siraj SS (2000) Identification and characterization of Malaysian river catfish, Mystus nemurus (C&V): RAPD and AFLP analysis. Biochem Genet 38:63–76

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall AK (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Cox JH, Gombek F (1985) A preliminary survey of the crocodile resource in Sarawak, East Malaysia. IUCN/WWF Project No. MAL 74/85

  • Davis LM, Glenn TC, Strickland DC, Guillette LJ, Elsey RM, Rhodes WE, Dessauer HC, Sawyer RH (2002) Microsatellite DNA analysis support an East-West phylogeographic split of American alligator populations. J Exp Zool 294:352–372

    Article  PubMed  CAS  Google Scholar 

  • de Thoisy B, Hrbek T, Farais IP, Vasconcelos WR, Lavergne A (2006) Genetic structure and population dynamics of black caiman (Melanosuchus niger). Biol Conserv 133:474–482

    Article  Google Scholar 

  • Dodson JJ, Colombani F, Ng PKL (1995) Phylogeographic structure in mitochondrial DNA of a South-east Asian freshwater fish, Hemibagrus nemurus (Siluroidei; Bagridae) and Pleistocene sea level changes on the Sunda shelf. Mol Ecol 4:331–346

    Article  CAS  Google Scholar 

  • Eaton MJ, Martin A, Thorbjarnarson J, Amato G (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506

    Article  PubMed  CAS  Google Scholar 

  • Esa YB, Siraj SS, Daud SK, Rahim KAA, Japning JRR, Tan SG (2008) Mitochondrial DNA diversity of Tor tambroides Valenciennes (Cyprinidae) from five natural populations in Malaysia. Zool Stud 47(3):360–367

    CAS  Google Scholar 

  • Farais IP, Silveira RD, de Thoisy B, Monjelo LA, Thorbjarnarson J, Hrbek T (2004) Genetic diversity and population structure of Amazonian crocodilians. Anim Conserv 7:265–272

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Gatesy J, Amato G, Norell M, DeSalle R, Hayashi C (2003) Combined support for wholesale taxic atavism in Gavialine crocodylians. Syst Biol 52(3):403–422

    Article  PubMed  Google Scholar 

  • Glenn TC, Staton JL, Vu AT, Davis LM, Alvarado Bremer JR, Rhodes WE, Brisbin IL Jr, Sawyer RH (2002) Low mitochondrial DNA variation among American alligators and a novel noncoding region in crocodilians. J Exp Zool (Mol Dev Evol) 294:312–324

    Article  CAS  Google Scholar 

  • Harshman J, Huddleston CJ, Bollback JP, Parsons TJ, Braun M (2003) True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst Biol 52(3):386–402

    Article  PubMed  Google Scholar 

  • Hart MW, Sunday J (2007) Things fall apart: biological species form unconnected parsimony networks. Biol Lett 3:509–512

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Hekkala E, Shirley MH, Amato G, Austin JD, Charter S, Thorbjarnarson J, Vliet KA, Houck ML, Desalle R, Blum MJ (2011) An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol 20:4199–4215

    Article  CAS  Google Scholar 

  • Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014

    PubMed  CAS  Google Scholar 

  • IUCN (2011) IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org. Downloaded 2 January 2012

  • Janke A, Gyllberg A, Hughes S, Aggarwal RK, Arnason U (2005) Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre K/T divergence times for most crocodilians. J Mol Evol 61:620–626

    Article  PubMed  CAS  Google Scholar 

  • Kaur T, Ong AHK (2011) Heteroplasmy, length, and sequence characterization of the mitochondrial control region in Tomistoma schlegelii. Biochem Genet 49:562–575

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Tomida Y, Kamei T, Eguchi T (2006) Anatomy of a Japanese tomistomine crocodylian, Toyotamaphimeia machikanensis (Kamei et Matsumoto 1965) from the Middle Pleistocene of Osaka prefecture: the reassessment of its phylogenetic status within Crocodylia. Natl Sci Mus Monogr 35:121

    Google Scholar 

  • Li Y, Wu X, Ji X, Yan P, Amato G (2007) The complete mitochondrial genome of saltwater crocodile (Crocodylus porosus) and phylogeny of crocodilians. J Genet Genomics 34(2):119–128

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Man Z, Yishu W, Peng Y, Xiaobing W (2011) Crocodilian phylogeny inferred from twelve mitochondrial protein-coding genes, with new complete mitochondrial genomic sequences for Crocodylus acutus and Crocodylus novaeguineae. Mol Phylogenet Evol 60:62–67

    Article  PubMed  Google Scholar 

  • McAliley LR, Willis RE, Ray DA, White PS, Brochu CA, Densmore LD (2006) Are crocodiles really monophyletic? Evidence for subdivisions from sequence and morphological data. Mol Phylogenet Evol 39:16–32

    Article  PubMed  CAS  Google Scholar 

  • Milian-Garcia Y, Venegas-Anaya M, Frias-Soler R, Crawford AJ, Ramos-Targarona R, Rodriguez-Soberon R, Alonso-Tabet M, Thorbjarnarson J, Sanjur OI, Espinosa-Lopez G, Bermingham E (2011) Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J Exp Zool 315:358–375

    Article  Google Scholar 

  • Moritz C (1994) Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Oaks JR (2011) A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65(11):3285–3297

    Article  PubMed  Google Scholar 

  • Piras P, Delfino M, Del Favero L, Kotsakis T (2007) Phylogenetic position of the crocodylian Megadontosuchus arduini and Tomistomine palaeobiogeography. Acta Palaeontol Pol 52(2):315–328

    Google Scholar 

  • Piras P, Colangelo P, Adams DC, Buscalioni A, Cubo J, Kotsakis T, Meloro C, Raiah P (2010) The Gavialis-Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodilian relationships. Evol Dev 12(6):568–579

    Article  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19(12):2092–2100

    Article  PubMed  CAS  Google Scholar 

  • Ray DA, Densmore LD (2003) Repetitive sequences in the crocodilian mitochondrial control region: poly-A sequences and heteroplasmic tandem repeats. Mol Biol Evol 20(6):1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Ray DA, White PS, Duong HV, Cullen T, Densmore LD (2000) High levels of genetic variability in West African dwarf crocodiles Osteolaemus tetraspsis tetraspis. In: Crocodilian Biology and Evolution. Chipping Norton: Surrey Beatty and Sons, pp 58–63

  • Ray DA, Dever JA, Platt SG, Rainwater TR, Finger AG, McMurry ST, Batzer MA, Barr B, Stafford PJ, McKnight J, Densmore LD (2004) Low levels of nucleotide diversity in Crocodylus moreletti and evidence of hybridization with C. acutus. Conserv Genet 5:449–462

    Article  Google Scholar 

  • Rodder D, Engler JO, Bonke R, Weinsheimer F, Pertel W (2010) Fading of the last giants: an assessment of habitat availability of the Sunda gharial Tomistoma schlegelii and coverage with protected areas. Aquat Conserv: Mar Freshw Ecosyst 20:678–684

    Article  Google Scholar 

  • Rodriguez D, Cedeno-Vazquez JR, Forstner MRJ, Densmore LD (2008) Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: II. Evidence from microsatellites. J Exp Zool 309A:1–13

    Article  Google Scholar 

  • Roos J, Aggarwal RK, Janke A (2007) Extended mitogenomic phylogenetic analyses yield new insight into crocodilian evolution and their survival of the Cretaceous-Tertiary boundary. Mol Phylogenet Evol 45:663–673

    Article  PubMed  CAS  Google Scholar 

  • Russello MA, Brazaitis P, Gratten J, Watkins-Colwell GJ, Caccone A (2007) Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the saltwater crocodile (Crocodylus porosus) on Palau. Conserv Genet 8:777–787

    Article  CAS  Google Scholar 

  • Ryan JR, Esa YB (2006) Phylogenetic analysis of Hampala fishes (subfamily Cyprininae) in Malaysia inferred from partial mitochondrial cytochrome b DNA sequences. Zool Stud 23(10):893–901

    CAS  Google Scholar 

  • Sebastian AC (1993) The tomistoma, Tomistoma schlegelii, in Southeast Asia, a status review and priorities for its conservation. Crocodiles, Proc 12th Working Meeting Crocodile Specialist Group, IUCN, World Conservation Union, Gland 1:98–112

  • Shan HY, Wu XC, Cheng YN, Sato T (2009) A new Tomistomine (Crocodylia) from the Miocene of Taiwan. Can J Earth Sci 46:529–555

    Article  Google Scholar 

  • Simpson BK, Lopez A, Latif S, Yusoh A (1998) Tomistoma (Tomistoma schlegelii) at Tasek Bera, Peninsular Malaysia. Crocodiles, Proc 14th Working Meeting Crocodile Specialist Group, IUCN, World Conservation Union, Gland 32–45

  • Stuebing RB, Bezuijen MR, Auliya M, Voris HK (2006) The current and historic distribution of Tomistoma schlegelii (the False Gharial) (Müller 1838) (Crocodylia, Reptilia). Raff Bull Zool 54:181–197

    Google Scholar 

  • Swofford DL (2003) PAUP: Phylogenetic analysis using parsimony (and other methods), version 4.0b 10. Sunderland, Mass.: Sinauer Associates

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos WR, Hrbek T, Silveira RD, de Thoisy B, Marioni B, Farais IP (2006) Population genetic analysis of Caiman crocodiles (Linnaeus, 1958) from South America. Genet Mol Biol 29(2):220–230

    Article  CAS  Google Scholar 

  • Vasconcelos WR, Hrbek T, Silveira RD, de Thoisy B, Ruffeil LAADS, Farais IP (2008) Phylogeographic and conservation genetic analysis of the black caiman (Melanosuchus niger). J Exp Zool 309A:600–613

    Article  CAS  Google Scholar 

  • Venegas-Anaya M, Crawford AJ, Galvan AHE, Sanjur O, Densmore LD, Bermingham E (2008) Mitochondrial DNA phylogeography of caiman crocodiles in Mesoamerica and South America. J Exp Zool 309A:614–627

    Article  CAS  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Weaver JP, Rodriguez D, Venegas-Anaya M, Cedeno-Vasquez JR, Forstner MRJ, Densmore DA (2008) Genetic characterization of captive Cuban crocodiles (Crocodylus rhombifer) and evidence of hybridization with the American crocodile (Crocodylus acutus). J Exp Zool 309A:600–613

    Article  Google Scholar 

  • Zhang Y, Wang X, Ryder OA, Li H, Zhang H, Yong Y, Wang P (2002) Genetic diversity and conservation of endangered animal species. Pure Appl Chem 74(4):575–584

    Article  CAS  Google Scholar 

  • Zhang Y, Nei L, Huang Y, Pu Y, Zhang L (2009) The mitochondrial DNA control region comparison studies of four hinged turtles and its phylogenetic significance of the genus Cuora sense Lato (Testudinata: Geomydidae). Genes Genom 31(5):349–359

    Article  Google Scholar 

Download references

Acknowledgments

The Department of Wildlife and National Parks, Peninsular Malaysia (DWNP), Forest Department of Sarawak and Sarawak Forestry Corporation (SFC), and Lembaga Ilmu Pengetahuan Indonesia (LIPI) were counterparts in providing assistance in permits and field staffs. We would like to thank the Director Generals, Dato Abdul Rashid Samsudin of DWNP, Dato Haji Len Talif Salleh of SFC, and Ir. Ahmad J. Arief from LIPI for participating in this work. We extend our appreciation to the officers of these government bodies, Dr. Sandie Choong, Dr. Abraham Matthews and Mr. Rauf Kadir (DWNP), Mr. Engkamat Lading (SFC), Dr. Gono Semiadi and Hellen Kurniati (LIPI), and all their staffs involved in assisting with the sample collection. We thank Zoo Negara, Melaka Zoo, Taiping Zoo, Temerloh Mini Zoo, and the crocodile farms in Kuching and Miri, Sarawak, and their personnel for assisting in sample collections in Malaysia. Similarly for Indonesian sampling, we appreciate the interest in this study and the hospitality of Mr. Rachmat Wiradinata and Erik Wiradinata of PT Ekanindya, Mr. Tarto Suroso Sugiarto of CV Surya Raya, and Mr. Resit Sozer of Cikananga Wildlife Rehabilitation Centre and their staffs. We also thank the Singapore Zoo and Hong Kong Wetland Park for participating in this study by providing the much needed samples. We would also like to thank Universiti Tunku Abdul Rahman (UTAR) Malaysia, S.O.S. Rhino, Sabah, Malaysia, Zoological Society for the Conservation of Species and Population (Zoologische Gesellschaft für Arten und Populationsschutz, ZGAP), and BOH Plantations Sdn. Bhd for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. K. Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, T., Japning, J.R.R., Sabki, M.S. et al. Genetic Diversity of Tomistoma schlegelii Inferred from mtDNA Markers. Biochem Genet 51, 275–295 (2013). https://doi.org/10.1007/s10528-012-9562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9562-9

Keywords

Navigation