Skip to main content
Log in

Analysis of STAT5A/AvaI Gene Polymorphism in Four Italian Cattle Breeds

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The STAT5A/AvaI polymorphism was investigated with PCR-RFLP in a sample of 339 cattle belonging to four breeds: Italian Friesian, Jersey, Italian Brown, and Podolica reared in south Italy. All three possible genotypes for the C/T polymorphism were identified. In these breeds, PCR-RFLP showed the predominance of the TT genotype in Italian Brown and Jersey cows; in Podolica and Italian Friesian CT is the most frequent genotype. The frequency of the T allele ranged from 0.55 to 0.81 in the analyzed populations. The distribution of genotypic and allelic frequencies at this locus was significantly different among the four populations based on a χ2 test (P < 0.001), suggesting that the molecular characteristics of the STAT5A gene could be significantly affected by the breed selection. Gene heterozygosity, gene homozygosity, effective allele number, fixation index, and polymorphism information content (PIC) were calculated. The observed heterozygosity, as well as the N e and PIC values, indicates high genetic variability in the Podolica breed. Podolica could be considered an interesting reservoir of genetic diversity for a species under high selective pressure elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antoniou E, Hirts BJ, Grosz M, Skidmorec J (1999) A single strand conformation polymorphism in the bovine gene STAT5A. Anim Genet 30:225–244

    Article  Google Scholar 

  • Argetsinger LS, Carter-Su C (1996) Growth hormone signaling mechanisms: involvement of the tyrosine kinase JAK2. Horm Res 45:22–24

    Article  PubMed  CAS  Google Scholar 

  • Baker CMA, Manwell C (1980) Chemical classification of cattle I. Breed groups. Anim Blood Groups Biochem Genet 11:127–150

    PubMed  CAS  Google Scholar 

  • Bettini TM, Masina P (1972) Proteine e polimorfismo proteico del latte vaccino. Prod Anim 11:107–126

    Google Scholar 

  • Botstein D, White RL, Skalnick MH, Davies RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Boucheron C, Dumon S, Santos SC, Moriggl R, Hennighausen L, Gisselbrecht S, Gouilleux F (1998) A single amino acid in the DNA binding regions of STAT5A and STAT5B confers distinct DNA binding specificities. J Biol Chem 273:33936–33941

    Article  PubMed  CAS  Google Scholar 

  • Brym P, Kamiński S, Ruść A (2004) New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. J Appl Genet 45:445–452

    PubMed  Google Scholar 

  • Chianese L, Di Luccia A, Mauriello R, Ferrara L, Zehender G, Addeo F (1988) Polimorfismo biochimico delle proteine del latte in bovine di razza Podolica. Zoot Nutr Anim 14:189–197

    Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, Essex, UK

    Google Scholar 

  • Flisikowski K, Zwierzchowski L (2002) Single-strand conformation polymorphism within exon 7 of the bovine STAT5A gene. Anim Sci Pap Rep 20:133–137

    CAS  Google Scholar 

  • Flisikowski K, Zwierzchowski L (2003) Polymerase chain reaction-heteroduplex (PCR-HD) polymorphism within the bovine STAT5A gene. J Appl Genet 44:185–189

    PubMed  Google Scholar 

  • Flisikowski K, Szymanowska M, Zwierzchowski L (2003a) The DNA binding capacity of genetic variants of the bovine STAT5A transcription factor. Cell Mol Biol Lett 8:831–840

    PubMed  CAS  Google Scholar 

  • Flisikowski K, Oprzdek J, Dymnicki E, Zwierzchowski L (2003b) New polymorphism in bovine STAT5A gene and its association with meat production traits in beef cattle. Anim Sci Pap Rep 21:147–157

    CAS  Google Scholar 

  • Flisikowski K, Strzałkowska N, Słoniewski K, Krzyżewki J, Zwierzchowski L (2004) Association of a sequence nucleotide polymorphism in exon 16 of the STAT5A gene with milk production traits in Polish Black-and-White (Polish Friesian) cows. Anim Sci Pap Rep 22:515–522

    CAS  Google Scholar 

  • Goldammer T, Meyer L, Seyfert H, Brunner RM, Schwerin M (1997) STAT5A encoding gene maps to chromosome 19 in cattle and goat and chromosome 11 in sheep. Mamm Genome 8:705–706

    Article  PubMed  CAS  Google Scholar 

  • Grosclaude F (1974) Comparason du polymorphisme génétique des lactopróteines du Zébu et des bovins. Ann Génét Sél Anim 6:305–329

    Google Scholar 

  • Herrington J, Smit L, Schwartz J, Carter-Su C (2000) The role of STAT proteins in GH signaling. Oncogene 19:2587–2597

    Article  Google Scholar 

  • Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL (1995) Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2:321–329

    Article  PubMed  CAS  Google Scholar 

  • Kazansky AV, Raught B, Lindsey SM, Wang YF, Rosen JM (1995) Regulation of mammary gland factor/Stat5a during mammary gland development. Mol Endocrinol 9:1598–1609

    Article  PubMed  CAS  Google Scholar 

  • Kidd KK, Stone WH, Crimella C, Carenzi C, Casati M, Rognoni G (1980) Immunogenetic and population genetic analysis of Iberian cattle. Anim Blood Groups Biochem Genet 11:21–38

    PubMed  CAS  Google Scholar 

  • Lechner J, Welte T, Dopler W (1997) Mechanism of interaction between the glucocorticoid receptor and STAT5: role of DNA-binding. Immunobiology 198:112–123

    PubMed  CAS  Google Scholar 

  • Lin JX, Mietz J, Modi WS, John S, Leonard WJ (1996) Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J Biol Chem 271:10738–10744

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L (1995) Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 92:8831–8835

    Article  PubMed  CAS  Google Scholar 

  • McCracken JY, Molenaar AJ, Snell RJ, Davey HW, Wilkins RJ (1997) A polymorphic TG repeat present within the bovine STAT5A gene. Anim Genet 28:453–464

    Google Scholar 

  • Molenaar A, Wheeler TT, McCracken JY, Seyfert H (2000) The STAT3-encoding gene resides within the 40 kbp gap between the STAT5A- and STAT5B-encoding genes in cattle. Anim Genet 31:333–346

    Article  Google Scholar 

  • Moriggl R, Gouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X, Hennighausen L, Sotiropoulos A, Groner B, Gouilleux F (1996) Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 16:5691–5700

    PubMed  CAS  Google Scholar 

  • Mui AL, Wakao H, O’Farrel AM, Harada N, Miyajima A (1995) Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J 14:1166–1175

    PubMed  CAS  Google Scholar 

  • Pellegrini S, Dusanter-Fourt I (1997) The structure, regulation and function of the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs). Eur J Biochem 248:615–633

    Article  PubMed  CAS  Google Scholar 

  • Pieragostini E, Scaloni A, Rullo R, Di Luccia A (2000) Identical marker alleles in Podolic cattle (Bos taurus) and zebu (Bos indicus). Comp Biochem Physiol B 127:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ripperger JA, Fritz S, Richter K, Hocke GM, Lottspeich F, Fey GH (1995) Transcription factors Stat3 and Stat5b are present in rat liver nuclei late in an acute phase response and bind interleukin-6 response elements. J Biol Chem 270:29998–30006

    Article  PubMed  CAS  Google Scholar 

  • Schindler C, Darnell JE Jr (1995) Transcriptional responses to polypeptide ligands. The JAK-STAT pathway. Ann Rev Biochem 64:621–651

    Article  PubMed  CAS  Google Scholar 

  • Seyfert H, Pitra C, Meyer L, Brunner RM, Wheeler TT, Molenaar A, McCracken JY, Herrmann J, Thiesen H, Schwerin M (2000) Molecular characterization of STAT5A- and STAT5B-encoding genes reveals extended intragenic sequence homogeneity in cattle and mouse and different degrees of divergent evolution of various domains. J Mol Evol 50:550–561

    PubMed  CAS  Google Scholar 

  • Silva CM, Lu H, Day RN (1996) Characterization and cloning of STAT5 from IM-9 cells and its activation by growth hormone. Mol Endocrinol 10:508–518

    Article  PubMed  CAS  Google Scholar 

  • Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S, Lacombe C, Mayeux P (1998) Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem 273:28185–28190

    Article  PubMed  CAS  Google Scholar 

  • Wakao H, Gouilleux F, Groner B (1994) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 13:2182–2191

    PubMed  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) PopGene32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dario, C., Dario, M., Ciotola, F. et al. Analysis of STAT5A/AvaI Gene Polymorphism in Four Italian Cattle Breeds. Biochem Genet 47, 671–679 (2009). https://doi.org/10.1007/s10528-009-9263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-009-9263-1

Keywords

Navigation