Skip to main content

Advertisement

Log in

Hox Genes from the Tapeworm Taenia asiatica (Platyhelminthes: Cestoda)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Hox genes are important in forming the anterior-posterior body axis pattern in the early developmental stage of animals. The conserved nature of the genomic organization of Hox genes is well known in diverse metazoans. To understand the Hox gene architecture in human-infecting Taenia tapeworms, we conducted a genomic survey of the Hox gene using degenerative polymerase chain reaction primers in Taenia asiatica. Six Hox gene orthologs from 276 clones were identified. Comparative analysis revealed that T. asiatica has six Hox orthologs, including two lab/Hox1, two Hox3, one Dfd/Hox4, and one Lox2/Lox4. The results suggest that Taenia Hox genes may have undergone independent gene duplication in two Hox paralogs. The failure to detect Post1/2 orthologs in T. asiatica may suggest that sequence divergence or the secondary loss of the posterior genes has occurred in the lineage leading to the cestode and trematode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  • Balavoine, G. (1996). Identification of members of several homeobox genes in a planarian using a ligation-mediated polymerase chain reaction technique. Nucleic Acids Res. 24:1547–1553.

    Article  PubMed  CAS  Google Scholar 

  • Balavoine, G., and Telford, M. J. (1995). Identification of planarian homeobox sequences indicates the antiquity of most Hox/homeotic gene subclasses. Proc. Natl. Acad. Sci. USA 92:7227–7231.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, J. L., Murtha, M. T., and Ruddle, F. H. (1993). Multiple Hox/HOM-Class Homeoboxes in Platyhelminthes. Mol. Phylogenet. Evol. 2:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Bayascas, J. R., Castillo, E., Munoz-Marmol, A. M., and Salo, E. (1997). Planarian Hox genes: Novel patterns of expression during regeneration. Development 124:141–148.

    PubMed  CAS  Google Scholar 

  • Callaerts, P., Lee, P. N., Hartmann, B., Farfan, C., Choy, D. W., Ikeo, K., Fischbach, K. F., Gehring, W. J., and de Couet, H. G. (2002). HOX genes in the sepiolid squid Euprymna scolopes: Implications for the evolution of complex body plans. Proc. Natl. Acad. Sci. USA 99:2088–2093.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S. J., Cho, P. Y., Lee, M. S., Hur, S. Y., Lee, J. A., Kim, S. K., Koh, K. S., Na, Y. E., Choo, J. K., Kim, C. B., and Park, S. C. (2003). Hox genes from the earthworm Perionyx excavatus. Dev. Genes Evol. 213:207–210.

    PubMed  CAS  Google Scholar 

  • De Rosa, R., Grenier, J. K., Andreeca, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., and Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776.

    Article  PubMed  CAS  Google Scholar 

  • Eom, K. S., and Rim, H. J. (1993). Morphological descriptions of Taenia asiatica sp. Korean J. Parasitol. 31:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez, J., Baguna, J., and Salo, E. (1991). Planarian homeobox genes: Cloning, sequence analysis, and expression. Proc. Natl. Acad. Sci. USA 88:7338–7342.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, W. J. (1987). Homeoboxes in the study of development. Science 236:1245–1252.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, S. Q., Warinner, S. A., Hunter, J. D., and Martindale, M. Q. (1997). A survey of homeobox genes in Chaetopterus variopedatus and analysis of polychaete homeodomains. Mol. Phylogenet. Evol. 7:331–345.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell 68:283–302.

    Article  PubMed  CAS  Google Scholar 

  • Misof, B. Y., and Wagner, G. P. (1996). Evidence for four Hox clusters in the killifish Fundulus heteroclitus (teleostei). Mol. Phylogenet. Evol. 5:309–322.

    Article  PubMed  CAS  Google Scholar 

  • Mito, T., and Endo, K. (2000). PCR survey of Hox genes in the crinoid and ophiuroid: Evidence for anterior conservation and posterior expansion in the echinoderm Hox gene cluster. Mol. Phylogenet. Evol. 14:375–388.

    Article  PubMed  CAS  Google Scholar 

  • Murtha, M. T., Lechman, J. F., and Ruddle, F. H. (1991). Detection of homeobox genes in development and evolution. Proc. Natl. Acad. Sci. USA 88:10711–10715.

    Article  PubMed  CAS  Google Scholar 

  • Nogi, T., and Watanabe, K. (2001). Position-specific and non-colinear expression of the planarian posterior (Abdominal-B-like) gene. Dev. Growth Differ. 43:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Orii, H., Kato, K., Umesono, Y., Sakurai, T., Agata, K., and Watanabe, K. (1999). The planarian HOM/HOX homeobox genes (Plox) expressed along the anteroposterior axis. Dev. Biol. 210:456–468.

    Article  PubMed  CAS  Google Scholar 

  • Papillon, D., Perez, Y., Fasano, L., Parco, Y. L., and Caubit, X. (2003). Hox gene survey in the chaetognath Spadella cephaloptera: Evolutionary implications. Dev. Genes Evol. 213:142–148.

    PubMed  CAS  Google Scholar 

  • Pierce, R. J., Wu, W., Hirai, H., Ivens, A., Murphy, L. D., Noel, C., Johnston, D. A., Artiguenave, F., Adams, M., Cornette, J., Viscogliosi, E., Capron, M., and Balavoine, G. (2005). Evidence for a dispersed Hox gene cluster in the platyhelminth parasite Schistosoma mansoni. Mol. Biol. Evol. 22:2491–2503.

    Article  PubMed  CAS  Google Scholar 

  • Scott, M. P., Tamkun, J. W., and Hartzell, G. W. (1989). The structure and function of the homeodomain. Biochim. Biophys. Acta 989:25–48.

    PubMed  CAS  Google Scholar 

  • Snow, P., and Buss, L. W. (1994). HOM/Hox-type homeoboxes from Stylaria lacustris (Annelida: Oligochaeta). Mol. Phylogenet. Evol. 3:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Telford, M. J. (2000). Turning Hox ``signatures'' into synapomorphies. Evol. Dev. 2:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., and Higgins, D. G. (1997). The Clustal X Windows interface flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Nucleotide sequence data reported in this paper are available in the GenBank, EMBL, and DDBJ databases under accession nos. DQ069784 and DQ387457-387461.

This work was supported by the KRIBB Research Initiative Program and the Bioinfrastructure Program of the Korea Ministry of Science and Technology. Parasite materials used in this study were provided by the Parasite Resource Bank of Korea National Research Resource Center (R21-2005-000-10007-0), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Bae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Lee, Y.S., Jeon, HK. et al. Hox Genes from the Tapeworm Taenia asiatica (Platyhelminthes: Cestoda). Biochem Genet 45, 335–343 (2007). https://doi.org/10.1007/s10528-007-9078-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9078-x

KEY WORDS

Navigation