Skip to main content
Log in

Allozyme Variation and Phylogenetic Relationships in Picea jezoensis (Pinaceae) Populations of the Russian Far East

  • Original Paper
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Genetic variation and differentiation of 12 populations of Picea jezoensis from the Russian Far East were studied using 20 allozyme loci. The mean number of alleles per locus was 2.63, the percent of polymorphic loci was 88.1%, the observed heterozygosity was 0.181, and the mean value of expected heterozygosity amounted to 0.189. The values of expected heterozygosity of the northern and central mainland populations were higher than in the southern part of the natural range. A significant bias of Hardy–Weinberg heterozygosity to equilibrium heterozygosity (Heq) suggests that most of the mainland populations have recently experienced a severe expansion in population size while populations from Kamchatka Peninsula have undergone a reduction in population size. Unbiased Nei’s genetic distance values were low within and between the mainland and Sakhalin Island populations (DN=0.008). The largest values (DN=0.063) were found between the mainland/Sakhalin and Kamchatka Peninsula populations. Based on genetic distance, P. jezoensis and P. kamtschatkensis could be considered as distinct taxa, but P. ajanensis, P. microsperma, and P. komarovii do not warrant taxonomic recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Cheliak, W. M., and Pitel, J. A. (1984). Techniques for Starch Gel Electrophoresis of Enzymes from Forest Tree Species. Information Rep. PI-X-42, Petawawa National For. Institute, Canadian Forest Service, Canada.

  • Cornuet, J. M., and Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014.

    PubMed  CAS  Google Scholar 

  • Edwards-Burke, M. A., Hamrick, J. L., and Price, R. A. (1997). Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). Am. J. Bot. 84:879–886.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  • Frolov, V. D. (1993). Diversity and population structure of Yeddo spruce on Sikhote-Alin, Ph.D. Thesis, Maritime Agriculture Institute, Ussuriisk, Russia.

  • Giannini, R., Morgante, M., and Vendramin, G. G. (1991). Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genet. 40:160–166.

    Google Scholar 

  • Golubeva, L. V., and Karaulova, L. P. (1983). Vegetation and Climatostratigraphy of Pleistocene and Holocene of the USSR Far East South, Nauka, Moskow, USSR.

  • Gömöry, D., and Paule, L. (1990). Comparison of the genetic variability of the spruce populations growing on the territory of the USSR and Slovakia. In Intensification of management in spruce stands in the context of ecology conditions, Vysoka Skola Lesnicka a Drevarska vo Zvolene, Zvolen, Slovakia, pp. 2–12.

  • Goncharenko, G. G., and Potenko, V. V. (1991a). The parameters of genetic diversity and differentiation in Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (Picea obovata Ledeb.) populations. Russ. Genet. 27:1759–1772.

    Google Scholar 

  • Goncharenko, G. G., and Potenko, V. V. (1991b). Genetic structure, variation, and differentiation of Sakhalin spruce (P. glehnii Mast.) on Sakhalin. Proc. Russ. Acad. Sci. 321:606–611.

    Google Scholar 

  • Goncharenko, G. G., and Potenko, V. V. (1992). Genetic diversity and differentiation of Picea ajanensis Fisch. in natural populations of Sakhalin Island and south of Khabarovsk Territory. Proc. Russ. Acad. Sci. 325:838–844.

    Google Scholar 

  • Goncharenko, G. G., Padutov, V. E., and Silin, A. E. (1992a). Population structure, genetic diversity, and differentiation in natural populations of Cedar pines (Pinus subsect. Cembrae, Pinaceae) in the USSR. Plant Syst. Evol. 182:121–134.

    Article  CAS  Google Scholar 

  • Goncharenko, G. G., Potenko, V. V., and Abdyganyev, N. (1992b). Diversity and differentiation in natural populations of Tien Shan spruce (P. schrenkiana Fisch. et Mey.). Russ. Genet. 28:83–96.

    Google Scholar 

  • Goncharenko, G. G., Silin, A. E., and Padutov, V. E. (1995). Intra- and interspecific genetic differentiation in closely related pines from Pinus subsection Sylvestres (Pinaceae) in the former Soviet Union. Plant Syst. Evol. 194:39–54.

    Article  Google Scholar 

  • Hamrick, J. L., Godt, M. J. W., and Sherman-Broyles, S. L. (1992). Factors influencing levels of genetic diversity in woody plant species. New For. 6:95–124.

    Google Scholar 

  • Hawley, G. J., and DeHayes, D. H. (1994). Genetic diversity and population structure of red spruce (Picea rubens). Can. J. Bot. 72:1778–1786.

    Google Scholar 

  • Jacobs, B. F., Werth, C. R., and Gutman, S. I. (1984). Genetic relationships in Abies (fir) of eastern United States: An electrophoretic study. Can. J. Bot. 62:609–616.

    Article  Google Scholar 

  • Komarov, V. L. (1934). Flora of the USSR. Academy of Sciences of the USSR, Leningrad, USSR.

  • Korotkii, A. M., Grebennikova, T. A., Pushkar, V. S., Razjigaeva, N. G., Volkov, V. G., Ganzey, L. A., Mokhova, L. M., Bazarova, V. B., and Makarova, T. R. (1997). Climatic changes in the Russian Far East during late Pleistocene-Holocene. Vestnik FEBRAS 3:121–143.

    Google Scholar 

  • Krutovskii, K. V., and Bergmann, F. (1995). Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74:464–480.

    CAS  Google Scholar 

  • Krutovskii, K. V., Politov, D. V., and Altukhov, Y. P. (1995). Isozyme study of population genetic structure, mating system and phylogenetic relationships of the five stone pine species (subsection Cembrae, section Strobi, subgenus Strobus [Strobi]). In Baradat, P., Adams, W. T., and Müller-Starck, G. (eds.), Population genetics and genetic conservation of forest trees, SPB Academic, Amsterdam, The Netherlands, pp. 279–304.

  • Ledig, F. T., Hodgskiss, P. D., and Johnson, D. R. (2005). Genic diversity, genetic structure, and mating system of Brewer spruce (Pinaceae), a relict of the Arcto-Tertiary forest. Am. J. Bot. 92:1975–1986.

    Google Scholar 

  • Ledig, F. T., Hodgskiss, P. D., Krutovskii, K. V., Neale, D. B., and Eguiluz, P. T. (2004). Relationships among the spruces (Picea, Pinaceae) of Southwestern North America. Syst. Bot. 29:275–295.

    Article  Google Scholar 

  • Ledig, F. T., Jacob, C. V., Hodgskiss, P. D., and Eguiluz, P. T. (1997). Evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene warming. Evolution 51:1815–1827.

    Article  Google Scholar 

  • Luikart, G., and Cornuet, J. M. (1998). Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12:228–237.

    Article  Google Scholar 

  • Man’ko, Y. I. (1987). Yeddo spruce, Nauka, Leningrad, USSR.

  • Maruyama, T., and Fuerst, P. A. (1984). Population bottlenecks and nonequilibrium models in population genetics, 1: Allele numbers when populations evolve from zero variability. Genetics 108:745–763.

    PubMed  CAS  Google Scholar 

  • Maruyama, T., and Fuerst, P. A. (1985). Population bottlenecks and nonequilibrium models in population genetics, 2: Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689.

    PubMed  CAS  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70:3321–3323.

    Article  PubMed  Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    PubMed  Google Scholar 

  • Neishtadt, M. I. (1957). History of Forests and Palaeogeography of the USSR in Holocene, Academy of Sciences of the USSR, Moscow, USSR.

  • Parker, K. C., Hamrick, J. L., Parker, A. J., and Stacy, E. A. (1997). Allozyme diversity in Pinus virginiana (Pinaceae): Intraspecific and interspecific comparisons. Am. J. Bot. 84:1372–1382.

    Article  Google Scholar 

  • Potemkin, O. N. (1994). Siberian spruce (Picea obovata Ledeb.) in Siberia and Far East (diversity, hybridization and taxonomy), Ph.D. Thesis, The Central Botanic Gardens of SB RAS, Novosibirsk, Russia.

  • Potenko, V. V., and Velikov, A. V. (1998). Genetic diversity and differentiation of natural populations of Pinus koraiensis (Sieb. et Zucc.) in Russia. Silvae Genet. 47:202–208.

    Google Scholar 

  • Shea, K. L. (1990). Genetic variation between and within populations of Engelmann spruce and subalpine fir. Genome 33:1–8.

    CAS  Google Scholar 

  • Sneath, P. H. A., and Sokal, R. R. (1973). Numerical Taxonomy, Freeman, San Francisco, CA.

  • Swofford, D. L., and Selander, R. B. (1989). Biosys-1: A computer program for the analysis of allelic variation in population genetics and biochemical systematics, Release 1.7, Illinois Natural History Survey, Ill.

  • Urusov, V. M. (1995). Geographical distribution and variability of conifers of the Russian Far East, Dalnauka, Vladivostok, Russia.

  • Usenko, N. V. (1969). Trees, shrubs, and lianas of the Far East. Far East Forestry, Research Institute, Khabarovsk, USSR.

  • Vasil’ev, V. N. (1950). Far East spruces Sect. Omorica Willkm. Botanicheskii Zhurnal 35:498–511.

    Google Scholar 

  • Vas’kovskii, A. P. (1959). Brief sketch of Quaternary vegetation, climate, and chronology in the upper reaches of the Kolyma and Indigirka rivers and in the northern coast of the Sea of Okhotsk. In The Ice Age in the European part of the USSR and Siberia, Moscow State University, Moscow, USSR, pp. 510–545.

  • Vorob’ev, D. P. (1968). Wild trees and shrubs of the Far East, Nauka, Leningrad, USSR.

  • Wang, Z. M., Nagasaka, K. (1997). Allozyme variation in natural populations of Picea glehnii in Hokkaido, Japan. Heredity 78:470–475.

    Article  Google Scholar 

  • Yeh, F. C., and Arnott, J. T. (1986). Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Can. J. For. Res. 16:791–798.

    Google Scholar 

  • Yeh, F. C., Khalil, M. A. K., El-Kassaby, Y. A., and Trust, D. C. (1986). Allozyme variation in Picea mariana from Newfoundland: genetic diversity, population structure, and analysis of differentiation. Can. J. For. Res. 16:713–720.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to thank two anonymous reviewers who gave helpful comments on the manuscript. I am also indebted to Dr. A. V. Velikov for his assistance in seed collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Potenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potenko, V.V. Allozyme Variation and Phylogenetic Relationships in Picea jezoensis (Pinaceae) Populations of the Russian Far East. Biochem Genet 45, 291–304 (2007). https://doi.org/10.1007/s10528-006-9075-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-006-9075-5

KEY WORDS

Navigation