Skip to main content
Log in

Interaction between the entomopathogenic nematode, Steinernema feltiae and selected chemical insecticides for management of the tomato leafminer, Tuta absoluta

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes are an important component of integrated pest management programs. This study aimed to determine the interaction between abamectin, azadirachtin, indoxacarb, chlorantraniliprole, dichlorvos and metaflumizone with two isolates of Steinernema feltiae (Filipjev) for the control of Tuta absoluta (Meyrick). The effect of recommended doses of the chemical insecticides on survival of S. feltiae and infectivity against Galleria mellonella (L.) larvae as a model organism were tested. Dichlorvos and abamectin were highly toxic to S. feltiae. Moreover, azadirachtin was moderately toxic to the nematodes, but significantly reduced nematode infectivity on G. mellonella. In interaction tests, S. feltiae isolates were applied at LC50 level, 0, 12, 24 and 36 h after larval of T. absoluta treatment with LC10 or LC25 of the insecticides. Out of 96 combinations the numbers of synergistic, additive and antagonistic interactions were 12, 57 and 27, respectively. Most of the antagonistic effects were observed when the nematodes were applied immediately or 12 h after the insecticide treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Alumai A, Grewal PS (2004) Tank-Mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biocontrol Sci Technol 18:725–730

    Google Scholar 

  • Amizadeh M, Hejazi MJ, Niknam G, Arzanlou M (2015) Compatibility and interaction between Bacillus thuringiensis and certain insecticides: perspective in management of Tuta absoluta (Lepidoptera: Gelechiidae). Biocontrol Sci Technol 25:671–684

    Google Scholar 

  • Ansari MA, Tirry L, Moens M (2004) Interaction between Metarhizium anisopliae CLO 53 and entomopathogenic nematodes for control of Hoplia philanthus. Biol Control 31:172–180

    Google Scholar 

  • Arthurs S, Heinz KM, Prasifka JR (2004) An analysis of using entomopathogenic nematodes against above-ground pest. Bull Entomol Res 94:297–306

    CAS  PubMed  Google Scholar 

  • Barati R, Hejazi MJ, Mohammadi SA (2018) Insecticide susceptibility in Tuta absoluta (Lepidoptera: Gelechiidae) and metabolic characterization of resistance to diazinon. J Econ Entomol 111:1551–1557

    PubMed  Google Scholar 

  • Batalla-Carrera L, Morton A, Garcia-del-Pino F (2010) Efficacy of entomopathogenic nematodes against tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl 55:523–530

    Google Scholar 

  • Blaney WM, Simmonds MJJ, Ley SV, Anderson JC, Toogood PL (1990) Antifeedant effects of azadirachtin and structurally related compounds on lepidopterous larvae. Entomol Exp Appl 55:149–160

    CAS  Google Scholar 

  • Brey PT (1994) The impact of stress on insect immunity. Bull Inst Pasteur 92:110–118

    Google Scholar 

  • Cabrera JA, Menjivar RD, Ae-FA Dababat, Sikora RA (2013) Properties and nematicide performance of avermectins. J Phytopath 161:65–69

    CAS  Google Scholar 

  • Corbitt TS, Djamgoz MBA, Wright DJ (1992) Effect of abamectin on electrophysiological activity in the ventral nerve cord of Periplaneta americana L.: correlation with symptoms of poisoning and levels of toxicant in vivo. Pest Manag Sci 34:321–327

    CAS  Google Scholar 

  • Cordova D, Benner EA, Sacher MD, Rauh JJ, Sopa JS, Lahm GP, Selby TP, Stevenson TM, Flexner L, Gutteridge S, Rhoades DF, Wu L, Smith RM, Tao Y (2006) Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic Biochem Physiol 84:196–214

    CAS  Google Scholar 

  • Cuthbertson AGS, Head J, Walters KFA, Murray AWA (2003) The integrated use of chemical insecticides and the entomopathogenic nematode, Steinernema feltiae, for the control of sweetpotato whitefly, Bemisia tabaci. Nematology 5:713–720

    CAS  Google Scholar 

  • Damme VM, Beck BK, Berckmoes E, Moerkens R, Wittemans L, De Vis R, Nuyttens D, Casteels HF, Maes M, Tirryb L, De Clercq P (2016) Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the laboratory. Pest Manag Sci 72:1702–1709

    PubMed  Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narvaez-Vasquez CA, Gonzalez-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215

    Google Scholar 

  • Ebrahimi L, Niknam G, Lewis EE (2011) Lethal and sublethal effects of Iranian isolates of Steinernema feltiae and Heterorhabditis bacteriophora on the Colorado potato beetle, Leptinotarsa decemlineata. BioControl 56:781–788

    Google Scholar 

  • Fan X, Hominick WR (1991) Efficiency of the Galleria (wax moth) baiting technique for recovering infective stages of entomopathogenic rhabditids (Steinernematidae and Heterorhabditidae) from sand and soil. Rev de Nematol 14:381–387

    Google Scholar 

  • Funderburk J, Stavisky J, Tipping C, Gorbet D, Momol T, Berger R (2002) Infection of Frankliniella fusca (Thysanoptera: Thripidae) in peanut by the parasitic nematode Thripinema fuscum (Tylenchidae: Allantonematidae). Environ Entomol 31:558–563

    Google Scholar 

  • Garcia-del-Pino F, Alabern X, Morton A (2013) Efficacy of soil treatments of entomopathogenic nematodes against the larvae, pupae and adults of Tuta absoluta and their interaction with the insecticides used against this insect. BioControl 58:723–731

    CAS  Google Scholar 

  • Georghiou GP (1994) Principles of insecticide resistance management. Phytoprotection 75:51–59

    Google Scholar 

  • Hara AH, Kaya HK (1983) Toxicity of selected organophosphate and carbamate pesticides to infective juveniles of the entomogenous nematode, Neoplectana carpocapsae (Rhabditida: Steinernematidae). Environ Entomol 12:496–501

    Google Scholar 

  • Hassani-Kakhki M, Karimi J, Hosseini M (2013) Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) under laboratory conditions. Biocontrol Sci Technol 23:146–159

    Google Scholar 

  • Head J, Walters KFA, Langton S (2000) The compatibility of the entomopathogenic nematode, Steinernema feltiae and chemical insecticides for the control of the South American leafminer Liriomyza huidobrensis. BioControl 45:345–353

    CAS  Google Scholar 

  • Khalil MS (2013) Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. Plant Pathol Microbiol 4:174–183

    Google Scholar 

  • Khan MR, Solanki RD, Bohra B, Vyas BN (2012) Evaluation of achook (azadirachtin 1500 ppm) against root knot nematode (Meloidogyne incognita) infecting okra. South Asian J Exp Biol 2:149–156

    Google Scholar 

  • Klein GM (1990) Efficacy against soilinhabiting insect pests. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 195–210

    Google Scholar 

  • Klein CD, Oloumi H (2005) Metaflumizone: a new insecticide for urban insect control from BASF. In: Proceedings of the fifth international conference on urban pests, Malaysia

  • Koppenhöfer AM, Kaya HK (1996) Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biol Control 8:131–137

    Google Scholar 

  • Koppenhöfer AM, Brown IM, Gaugler R, Grewal PS, Kaya HK, Klein MG (2000) Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biol Control 19:245–251

    Google Scholar 

  • Lapied B, Grolleau F, Sattelle DB (2001) Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels. Br J Pharmacol 132:587–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lietti MM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119

    Google Scholar 

  • Mannion CM, Winkler HE, Shapiro DI, Gibb T (2000) Interaction between halofenozide and the entomopathogenic nematode Heterorhabditis marelatus for control of Japanese beetle (Coleoptera: Scarabaeidae) larvae. J Econ Entomol 93:48–53

    CAS  PubMed  Google Scholar 

  • McVay JR, Gudauskas RT, Harper JD (1977) Effects of Bacillus thuringiensis nuclear-polyhedrosis virus mixtures on Trichoplusia ni larvae. J Invertebr Pathol 29:367–372

    Google Scholar 

  • Metcalf RL (1980) Changing role of insecticides in crop protection. Annu Rev Entomol 25:219–256

    CAS  Google Scholar 

  • Morales-Rodriguez A, Peck DC (2009) Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallon majale and Popillia japonica. Biol Control 51:169–180

    CAS  Google Scholar 

  • Mulla MS, Su T (1999) Activity and biological effects of neem products against arthropods of medical and veterinary importance. AMCA 15:133–152

    CAS  Google Scholar 

  • Negrisoli AS, Garcia MS, Negrisoli CRCB (2010) Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Prot 29:545–549

    Google Scholar 

  • Opperman CH, Chang S (1992) Nematode acetylcholinesterase: molecular forms and their potential role in nematode behavior. Parasitol Today 8:406–411

    CAS  PubMed  Google Scholar 

  • Poinar GO (1975) Entomogenous nematodes. Brill, Netherlands

    Google Scholar 

  • Poinar GO (1990) Biology and taxonomy of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–58

    Google Scholar 

  • Robertson JL, Russell RM, Preisler HK, Savin NE (2007) Bioassays with arthropods. CRC Press, Boca Raton

    Google Scholar 

  • Roditakis E, Skarmoutsou C, Staurakaki M, Martínez-Aguirre MR, García-Vidal L, Bielza P, Haddi K, Rapisarda C, Rison JL, Bassi A, Teixeira LA (2013) Determination of baseline susceptibility of European populations of Tuta absoluta (Meyrick) to indoxacarb and chlorantraniliprole using a novel dip bioassay method. Pest Manag Sci 69:217–227

    CAS  PubMed  Google Scholar 

  • Rovesti L, Deseo KV (1990) Compatibility of chemical pesticides with entomopathogenic nematodes Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica 36:237–245

    Google Scholar 

  • Rovesti L, Heinzpeter EW, Tagliente E, Deseo KV (1988) Compatibility of pesticides with the entomopathogenic nematode Heterorhabditis bacteriophora Poinar (Nematoda: Heterorhabditidae). Nematologica 34:462–476

    CAS  Google Scholar 

  • SAS Institute (2008) SAS 9.1.3 for Windows. SAS Institute, Cary

  • Steinhaus EA (1958) Stress as a factor in insect disease. In: Proceedings of the 10th international congress of entomology, Montreal, Canada, vol 4, pp 725–730

  • Williams EC, Walters KFA (2000) Foliar application of the entomopathogenic nematode Steinernema feltiae against leafminers on vegetables. Biocontrol Sci Technol 10:61–70

    Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Arkansas Agricultural Experiment Station, Fayetteville

    Google Scholar 

  • Yu SJ (2008) The toxicology and biochemistry of insecticides. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the University of Tabriz, Tabriz, Iran for financial support of this research. We are also grateful to Zist Bani Paya Company (Tehran, Iran) for generously donating NeemAzal®-T/S used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Amizadeh.

Ethics declarations

Research involving human and animal rights

The authors certify that the research not involving human participants and/or animal.

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Handling Editor: Ralf Ehlers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amizadeh, M., Hejazi, M.J., Niknam, G. et al. Interaction between the entomopathogenic nematode, Steinernema feltiae and selected chemical insecticides for management of the tomato leafminer, Tuta absoluta. BioControl 64, 709–721 (2019). https://doi.org/10.1007/s10526-019-09973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-019-09973-x

Keywords

Navigation