Skip to main content
Log in

The importance of cryptic species and subspecific populations in classic biological control of weeds: a North American perspective

  • Review
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Classical biological control of weeds depends on finding agents that are highly host-specific. This requires not only correctly understanding the identity of the target plant, sometimes to subspecific levels, in order to find suitable agents, but also identifying agents that are sufficiently specific to be safe and effective. Behavioral experiments and molecular genetic tools have revealed that some arthropod species previously thought to be polyphagous really consist of multiple cryptic species, host races or biotypes, some of which are more host-specific than others. Whereas true species are reproductively isolated, individuals from subspecific populations may potentially interbreed with those of other populations if they should encounter them. Furthermore, biotypes may consist of individuals sharing a genotype that is not fixed within a monophyletic group, and thus may not be evolutionarily stable. This raises the question of how such populations should be classified, and how to confirm the identity of live arthropods before releasing them as classical biological control agents. The existence of host races or cryptic species may greatly increase the number of prospective biological control agents available. However, it may also create new challenges for governmental regulation. These issues are discussed using pertinent examples, mainly from North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Zarazaga MA, Sánchez-Ruiz M (2002) Revision of the Trichosirocalus horridus (Panzer) species complex, with description of two new species infesting thistles (Coleoptera: Curculionidae, Ceutorhynchinae). Aust J Entomol 41:199–208

    Article  Google Scholar 

  • Andres LA, Rees NE (1995) Musk thistle. In: Nechols JR, Andres LS, Beardsley JW, Goeden RD, Jackson CG (eds) Biological control in the western United States: accomplishments and benefits of regional research project W-84, 1964-1989. University of California, Division of Agriculture and Natural Resources, Oakland, vol 3361, pp 248–251

  • Antonini G, Coletti G, Serrani L, Tronci C, Cristofaro M, Smith L (2009) Using molecular genetics to identify immature specimens of the weevil Ceratapion basicorne (Coleoptera, Apionidae). Biol Control 51:152–157

    Article  CAS  Google Scholar 

  • Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM (2017) Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis). Mol Ecol 26:1131–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bickford D, Lohman DJ, Navjot SS, Ng PKL, Meier R, Winker R (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Borger CP, Guijun Yan D, Scott JK, Walsh MJ, Powles SB (2008) Salsola tragus or S. australis (Chenopodiaceae) in Australia—untangling taxonomic confusion through molecular and cytological analyses. Aust J Bot 56:600–608

    Article  Google Scholar 

  • Boswell A, Sing S, Ward S (2016) Plastid DNA analysis reveals cryptic hybridization in invasive Dalmatian toadflax populations. Invasive Plant Sci Manag 9:112–120

    Article  CAS  Google Scholar 

  • Briese DT (2012) Onopordum acanthium L.—Scotch thistle Onopordum illyricum L.—Illyrian thistle hybrids. In: Julien MH, McFadyen R, Cullen J (eds) Biological control of weeds in Australia. CSIRO Publishing, Collingwood, pp 416–424

    Google Scholar 

  • Briese DT, Walker A, Pettit WJ, Sagliocco JL (2002) Host-specificity of candidate agents for the biological control of Onopordum spp. thistles in Australia: an assessment of testing procedures. Biocontrol Sci Technol 12:149–163

    Article  Google Scholar 

  • Bruckart W, Cavin C, Vajna L, Schwarczinger I, Ryan FJ (2004) Differential susceptibility of Russian thistle accessions to Colletotrichum gloeosporoides. Biol Control 30:306–311

    Article  Google Scholar 

  • Casagrande RA, Blossey B, Häfliger O (submitted) How specific can you get? Is the common reed, Phragmites australis, an anomaly? BioControl

  • Clement SL (1994) Resistance among populations of yellow starthistle to thistle-head insects: results from garden plots in Italy. Biol Control 4:149–156

    Article  Google Scholar 

  • Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict species boundaries. J Econ Entomol 99:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Cook LG, Edwards RD, Crisp MD, Hardy NB (2010) Need morphology always be required for new species descriptions? Invertebr Syst 24:322–326

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Cristofaro M, Dolgovskaya M, Kostantinov A (2004) Psylliodes chalcomera Illiger (Coleoptera: Chrysomelidae: Alticinae), a flea beatle candidate for biological control of yellow starthistle, Centaurea solstitialis. In: Cullen JM, Briese DT, Kriticos DJ (eds) Proceeding of the XI international symposium on biological control of weeds. CSIRO Entomology, Canberra, Australia, pp 75–80

    Google Scholar 

  • Crompton CW, Stahevitch AE, Wojtas WA (1990) Morphometric studies of the Euphorbia esula group (Euphorbiaceae) in North America. Can J Bot 68:1978–1988

    Article  Google Scholar 

  • Cullen J (2012) Chondrilla juncea L.—skeleton weed. In: Julien MH, McFadyen R, Cullen J (eds) Biological control of weeds in Australia. CSIRO Publishing, Collingwood, Victoria, pp 150–161

    Google Scholar 

  • Darlington CD (1940) Taxonomic systems and genetic systems. In: Huxley J (ed) The new systematics. Clarendon Press, Oxford, pp 137–160

    Google Scholar 

  • De Biase A, Colonnelli E, Belvedere S, La Marca A, Cristofaro M, Smith L (2016) Genetic and morphological studies of Trichosirocalus species introduced to North America, Australia and New Zealand for the biological control of thistles. Bull Entomol Res 106:99–113

    Article  PubMed  Google Scholar 

  • De Clerck-Floate RA, McClay AS (2013) Linaria vulgaris Mill., yellow toadflax (Plantaginaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001-2012. CABI, Lethbridge, pp 354–362

    Chapter  Google Scholar 

  • De Clerck-Floate RA, Turner SC (2013) Linaria dalmatica (L.) Miller, Dalmatian toadflax (Plantaginaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001-2012. CABI, Lethbridge, pp 342–353

    Chapter  Google Scholar 

  • Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 2:471–504

    Article  Google Scholar 

  • Downie DA (2010) Baubles, bangles, and biotypes: a critical review of the use and abuse of the biotype concept. J Insect Sci 10(176):1–18. https://doi.org/10.1673/031.010.14136

    Article  Google Scholar 

  • Drès M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc B 357:471–492

    Article  Google Scholar 

  • Fox LA, Morrow PA (1981) Specialization: species property or local phenomenon. Science 211(4485):887–893

    Article  PubMed  CAS  Google Scholar 

  • Fumanal B, Martin JF, Sobhian R, Blanchet A, Bon MC (2004) Host range of Ceutorhynchus assimilis (Coleoptera: Curculionidae), a candidate for biological control of Lepidium draba (Brassicaceae) in the USA. Biol Control 30:598–607

    Article  Google Scholar 

  • Fumanal B, Martin JF, Bon MC (2005) High through-put characterization of insect morphocryptic entities by a non-invasive method using direct-PCR of fecal DNA. J Biotechnol 119:15–19

    Article  PubMed  CAS  Google Scholar 

  • Gaskin JF, Kazmer DJ (2009) Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biol Invasions 11:1121–1130

    Article  Google Scholar 

  • Gaskin JF, Shafroth PB (2005) Hybridization of Tamarix ramosissima and T. chinensis (saltcedars) with T. aphylla (athel)(Tamaricaceae) in the southwestern USA determined from DNA sequence data. Madrono 52:1–10

    Article  Google Scholar 

  • Gaskin JF, Bon MC, Cock MJW, Cristofaro M, De Biase AD, De Clerck-Floate R, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21

    Article  CAS  Google Scholar 

  • Gaskin JF, Schwarzländer M, Kinter CL, Smith JF, Novak SJ (2013a) Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an apomictic invader on three continents. Am J Bot 100:1871–1882

    Article  PubMed  Google Scholar 

  • Gaskin JF, Schwarzlaender Hinz HL, Williams L, Gerber E, Rector GR, Zhang DY (2013b) Genetic identity and diversity of perennial pepperweed (Lepidium latifolium) in its native and invaded ranges. Invasive Plant Sci Mana 6:268–280

    Article  Google Scholar 

  • Goolsby JA, De Barro PJ, Makinson J, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297

    Article  PubMed  CAS  Google Scholar 

  • Harris P (1984) Carduus nutans L., nodding thistle and C. acanthoides L., plumeless thistle (Compositae). In: Kelleher JS, Hulme MA (eds) Biological control programs against insects and weeds in Canada, 1969–80. CAB, Slough, pp 115–126

    Google Scholar 

  • Hoffmann A (1954) Faune de France. Office Central de Faune publ., Paris, 59(2):980–984

  • Houghton-Thompson J, Prince HH, Smith JJ, Hancock JF (2005) Evidence of hybridization between Lythrum salicaria (purple loosestrife) and L. alatum (winged loosestrife) in North America. Ann Bot 96:877–885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hrusa GF, Gaskin JF (2008) The Salsola tragus complex in California (Chenopodiaceae): characterization and status of Salsola australis and the autochthonous allopolyploid Salsola ryanii sp. nov. Madroño 55:113–131

    Article  Google Scholar 

  • Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239

    Article  Google Scholar 

  • Jessep CT (1989) Introduction of the crown weevil (Trichosirocalus horridus) as an additional biocontrol agent against nodding thistle. Proceedings of New Zealand weed and pest control conference, vol 42, pp 52–54

  • Kleist A, Herrera-Reddy AM, Sforza R, Jasieniuk M (2014) Inferring the complex origins of horticultural invasives: French broom in California. Biol Invasions 16:887–901

    Article  Google Scholar 

  • Kniskern J, Rausher MD (2001) Two modes of host-enemy coevolution. Popul Ecol 43:3–14

    Article  Google Scholar 

  • Kok LT, Trumble JT (1979) Establishment of Ceuthorhynchidius horridus (Coleoptera: Curculionidae), an imported thistle-feeding weevil, in Virginia. Environ Entomol 8:221–223

    Article  Google Scholar 

  • Lake EC, Smith MC, Pratt PD, Boughton AJ, Pemberton RW (2014) Dispersal and establishment of new populations of the biological control agent Floracarus perrepae (Acariformes: Eriophyidae) on Old World climbing fern, Lygodium microphyllum (Polypodiales: Lygodiaceae). Fla Entomol 97:827–829

    Article  Google Scholar 

  • Madeira PT, Tipping PW, Gandolfo DE, Center TD, Van TK, O’Brien CW (2006) Molecular and morphological examination of Cyrtobagous sp. collected from Argentina, Paraguay, Brazil, Australia, and Florida. BioControl 51:679–701

    Article  Google Scholar 

  • Manrique V, Cuda JP, Overholt WA, Williams DA, Wheeler GS (2008) Effect of host-plant genotypes on the performance of three candidate biological control agents of Schinus terebinthifolius in Florida. Biol Control 47:167–171

    Article  Google Scholar 

  • Manrique V, Diaz R, Erazo L, Reddi N, Wheeler GS, Williams D, Overholt WA (2014) Comparison of two populations of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) as candidates for biological control of the invasive weed Schinus terebinthifolia (Sapindales: Anacardiaceae). Biocontrol Sci Technol 24:518–535

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, Cambridge

    Google Scholar 

  • Monfreda R, De Lillo E (2012) Eriophyoid mites (Acari: Eriophyoidea) on Brassicaceae: a new species of Metaculus from Turkey and remarks on other species associated with brassicaceous plants. Zootaxa 3154:47–60

    Google Scholar 

  • Moody ML, Les DH (2002) Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc Natl Acad Sci USA 99:14867–14871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mopper S, Strauss SY (2013) Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behavior. Springer, New York

    Google Scholar 

  • Mound LA, Wheeler GS, Williams DA (2010) Resolving cryptic species with morphology and DNA; thrips as a potential biocontrol agent of Brazilian peppertree, with a new species and overview of Pseudophilothrips (Thysanoptera). Zootaxa 2432:59–68

    Google Scholar 

  • Noor MAF (2002) Is the biological species concept showing its age? Trends Ecol Evol 17:153–154

    Article  Google Scholar 

  • Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson ID, Managan R, Downie DA, Coetzee JA, Hill MP, Burke AM, Downey PO, Henry TJ, Compton S (2016) Two in one: cryptic species discovered in biological control agent populations using molecular data and interbreeding experiments. Ecol Evol 6:6139–6150

    Article  PubMed  PubMed Central  Google Scholar 

  • Peccoud J, Ollivier A, Plantegenest M, Simon JC (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc Natl Acad Sci USA 106:7495–7500

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitcairn MJ, Smith L, Moran P (2014) Weed biological control agents approved for California. Cal 22(1):6–7

    Google Scholar 

  • Powell THQ, Hood GR, Murphy MO, Heilveil JS, Nosil P, Berlocher SH, Feder JL (2013) Genetic divergence across the speciation continuum: the transition from host race to species in Rhagoletis. Evolution 67:2561–2576

    Article  PubMed  Google Scholar 

  • Rilke S (1999) Revision der sektion Salsola S.L. der gattung Salsola (Chenopodiaceae). Bibl Bot 149:1–190

    Google Scholar 

  • Saltonstall K, Castillo H, Blossey B (2014) Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. Am J Bot 101:211–215

    Article  PubMed  Google Scholar 

  • Singer MC, Thomas CD, Billington HL, Parmesan C (1994) Correlates of speed of evolution of host preference in a set of twelve populations of the butterfly Euphydryas editha. Ecoscience 1:107–114

    Article  Google Scholar 

  • Skoracka A, Smith L, Oldfield G, Cristofaro M, Amrine JW (2010) Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Exp Appl Acarol 51:93–113

    Article  PubMed  Google Scholar 

  • Smith L, De Lillo E, Amrine JW (2010) Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp Appl Acarol 51:115–149

    Article  PubMed  CAS  Google Scholar 

  • Sobhian R, Andres LA (1978) The response of the skeletonweed gall midge, Cystiphora schmidti (Diptera: Cecidomyiidae), and gall mite, Aceria chondrillae (Eriophyidae) to North American strains of rush skeletonweed (Chondrilla juncea). Environ Entomol 7:506–508

    Article  Google Scholar 

  • Sobhian R, Ryan FJ, Khamraev A, Pitcairn MJ, Bell DE (2003) DNA phenotyping to find a natural enemy in Uzbekistan for California biotypes of Salsola tragus L. Biol Control 28:222–2280

    Article  Google Scholar 

  • Stepanović S, Kosovac A, Krstić O, Jović J, Toševski I (2016) Morphology versus DNA barcoding: two sides of the same coin. A case study of Ceutorhynchus erysimi and C. contractus identification. Insect Sci 23:638–648

    Article  PubMed  CAS  Google Scholar 

  • Supkoff DM, Joley DB, Marois JJ (1988) Effect of introduced biological control organisms on the density of Chondrilla juncea in California. J Appl Ecol 25:1089–1095

    Article  Google Scholar 

  • Tewksbury L, Casagrande R, Blossey B, Häfliger P, Schwarzländer M (2002) Potential for biological control of Phragmites australis in North America. Biol Control 23:191–212

    Article  Google Scholar 

  • Toševski I, Caldara R, Jovic J, Hernandez-Vera G, Baviera C, Gassmann A, Emerson BC (2011) Morphological, molecular and biological evidence reveal two cryptic species in Mecinus janthinus Germar (Coleoptera, Curculionidae), a successful biological control agent of Dalmatian toadflax, Linaria dalmatica (Lamiales, Plantaginaceae). Syst Entomol 36:741–753

    Article  Google Scholar 

  • Toševski I, Jović J, Krstić O, Gassmann A (2013) PCR-RFLP-based method for reliable discrimination of cryptic species within Mecinus janthinus species complex (Mecinini, Curculionidae) introduced in North America for biological control of invasive toadflaxes. BioControl 58:563–573

    Article  CAS  Google Scholar 

  • USDA-APHIS (1998) Reviewer’s manual for the Technical Advisory Group for biological control agents of weeds: guidelines for evaluating the safety of candidate biological control agents. USDA-APHIS-PPQ, Marketing and Regulatory Programs. 03/98-01

  • Ward SM, Fleischmann CE, Turner MF, Sing SE (2009) Hybridization between invasive populations of Dalmatian toadflax (Linaria dalmatica) and yellow toadflax (Linaria vulgaris). Invasive Plant Sci Mana 2:369–378

    Article  CAS  Google Scholar 

  • Williams DA, Overholt WA, Cuda JP, Hughes CR (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol Ecol 14:3643–3656

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Muchugu E, Overholt WA, Cuda JP (2007) Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity 98:284–293

    Article  PubMed  CAS  Google Scholar 

  • Wilson, LM, Sing SE, Piper GL, Hansen RW, De Clerck-Floate R, MacKinnon DK, Randall CB (2009) Biology and biological control of Dalmatian and yellow toadflax. USDA Forest Service, Forest Health Technology Enterprise Team. FHTET-2005-13, 2nd edn., June 2009

  • Woodburn TL (1997) Establishment in Australia of Trichosirocalus horridus a biological control agent for Carduus nutans, and preliminary assessment of its impact on plant growth and reproductive potential. Biocontrol Sci Technol 7:645–656

    Article  Google Scholar 

Download references

Acknowledgement

We thank anonymous reviewers for their comments and recommendations on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lincoln Smith.

Additional information

Handling Editors: Mark Schwarzländer, Cliff Moran and S. Raghu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, L., Cristofaro, M., Bon, MC. et al. The importance of cryptic species and subspecific populations in classic biological control of weeds: a North American perspective. BioControl 63, 417–425 (2018). https://doi.org/10.1007/s10526-017-9859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-017-9859-z

Keywords

Navigation