Skip to main content
Log in

Biological control of tree and woody plant diseases: an impossible task?

  • Foreword
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The social demand for novel, sustainable and environment friendly approaches, while ensuring the health and productivity of our crops, is increasingly growing. Research on biological control of tree/woody crop diseases is scarce compared to that conducted on herbaceous, annual plants. In addition to their large biomass, complicated anatomy, longevity and perennial nature, peculiarities in the management of tree crops and forestry also contribute to the complexity of the processes of developing effective biological control measures in these agro-ecosystems. Although biological control in woody species poses challenges, difficulties and limitations, its implementation either alone or in combination with other disease management strategies is feasible. As a result, examples of successful application of biocontrol measures based on the use of bacteria, fungi or hypovirulent mycoviruses against tree/woody plant diseases are available. The aim of this special issue is to provide interested readers with an overview and updates on the active research field of biological control of tree and woody plant diseases. Such effort includes updates ranging from the generation of fundamental knowledge to examples of successful application of biological control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abraham A, Philip S, Jacob SK, Jayachandran K (2013) Novel bacteria endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl 58:675–684

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant Pathology, 5th edn. Elsevier, Academic Press, New York

    Google Scholar 

  • Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Anand A, Uppalapati SR, Ryu C-M, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla N, Gutiérrez-Barranquero JA, de Vicente A, Cazorla FM (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4:475–491

    Article  Google Scholar 

  • Bonilla N, Vida C, Martínez-Alonso M, Landa BB, Gaju N, Cazorla FM, de Vicente A (2015) Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities. Appl Environ Microbiol 81:3405–3418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr TJ, Otten L (1999) Crown gall of grape: biology disease management. Annu Rev Phytopathol 37:53–80

    Article  CAS  PubMed  Google Scholar 

  • Calderón CE, Ramos C, de Vicente A, Cazorla FM (2015) Comparative genomic analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol Plant-Microbe Interact 28:249–260

    Article  PubMed  Google Scholar 

  • Camilo-Alves CDEP, Esteves da Clara MI, de Almeida Cabral, Ribeiro NM (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432

    Article  Google Scholar 

  • Ciancio A, Roccuzzo G, Ornat Longaron C (2016) Regulation of the citrus nematode Tylenchulus semipenetrans by a Pasteuria sp. endoparasite in a naturally infested soil. BioControl (this issue). doi:10.1007/s10526-015-9704-1

    Google Scholar 

  • Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F (2012) Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58:435–455

    Article  Google Scholar 

  • Connor DJ, Gomez del Campo M, Rousseaux MC, Searles PS (2014) Structure, management and productivity of hedgerow olive orchards: a review. Sci Hortic 169:71–93

    Article  Google Scholar 

  • Cooper JI (1979) Virus diseases of trees and shrubs. Institute of Terrestrial Biology, Cambridge

    Google Scholar 

  • Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, Thomas SM, Smith JR, Hintler G, Duguid MC, Amatulli G, Tuanmu MN, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams SJ, Wiser SK, Huber MO, Hengeveld GM, Nabuurs GJ, Tikhonova E, Borchardt P, Li CF, Powrie LW, Fischer M, Hemp A, Homeier J, Cho P, Vibrans AC, Umunay PM, Piao SL, Rowe CW, Ashton MS, Crane PR, Bradford MA (2015) Mapping tree density at a global scale. Nature 525:201–205

    Article  CAS  PubMed  Google Scholar 

  • de Cleene M, de Ley J (1976) The host range of Crown gall. Bot Rev 42:388–466

    Article  Google Scholar 

  • Dolinski C (2016) Entomopathogenic nematodes against the main guava insect pests. BioControl (this issue). doi:10.1007/s10526-015-9695-y

    Google Scholar 

  • Duncan LW, Noling JW (1987) The relationship between development of the citrus root system and infestation by Tylenchulus semipenetrans. Rev Nématol 10:61–66

    Google Scholar 

  • El Hassni M, J’Aiti F, Dihazi A, Ait Barka E, Daayf F, El Hadrami I (2004) Enhancement of defence responses against Bayoud disease by treatment of date palm seedlings with an hypoaggressive Fusarium oxysporum isolate. J Phytopathol 152:182–189

    Article  Google Scholar 

  • El Hassni M, El Hadrami A, Daayf F, Cherif M, Barka EA, El Hadrami I (2007) Biological control of Bayoud disease in date palm: selection of microorganisms inhibiting the causal agent and inducing defense reactions. Environ Exp Bot 59:224–234

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2010) Global forest resources assessment 2010: global tables. http://foris.fao.org/static/data/fra2010/FRA2010GlobaltablesEnJune29.xls

  • Gai C, Lacava P, Quecine M, Auriac M-C, Lopes J, Araújo W, Miller T, Azevedo J (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of Citrus variegated chlorosis. J Microbiol 47:448–454

    Article  PubMed  Google Scholar 

  • García-Jiménez J, Monte E, Trapero A (2010) Los hongos y oomicetos fitopatógenos. In: Jiménez Díaz R, Montesinos Segui E (eds.) Enfermedades de las plantas causadas por hongos y oomicetos. Naturaleza y control integrado, Phytoma, España, pp 23–50 (in Spanish)

  • González-Sánchez MA, de Vicente A, Pérez-García A, Pérez-Jiménez R, Romero D, Cazorla FM (2013) Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biol Control 67:94–100

    Article  Google Scholar 

  • Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427

    PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiniger U, Rigling D (1994) Biological control of chestnut blight in Europe. Annu Rev Phytopathol 32:581–599

    Article  Google Scholar 

  • Holb IJ, Heijne B, Jeger MJ (2004) Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab. Plant Dis 88:751–757

    Article  Google Scholar 

  • Kennelly MM, Cazorla FM, de Vicente A, Ramos C, Sundin GW (2007) Pseudomonas syringae diseases of fruit trees—progress toward understanding and control. Plant Dis 91:4–17

    Article  Google Scholar 

  • Lacava PT, Araújo WL, Marcon J, Maccheroni W, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  CAS  PubMed  Google Scholar 

  • Lacava P, Li W, Araújo W, Azevedo J, Hartung J (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    CAS  PubMed  Google Scholar 

  • López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344:1–50

    Article  Google Scholar 

  • López-Herrera CJ, Perez-Jiménez RM, Basallote-Ureba MJ, Zea Bonilla T, Melero-Vara JM (2003) Effect of soil solarization on the control of Phytophthora root rot in avocado. Plant Pathol 46:329–340

    Article  Google Scholar 

  • Maldonado-González MM, Prieto P, Ramos C, Mercado-Blanco J (2013) From the root to the stem: interactions between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots. Microbial Biotechnol 6:275–287

    Article  Google Scholar 

  • Maldonado-González MM, Schilirò E, Prieto P, Mercado-Blanco J (2015) Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environ Microbiol 17:3139–3153

    Article  PubMed  Google Scholar 

  • Manion PD (1991) Tree disease concepts, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Markakis EA, Sotirios ET, Antoniou PP, Paplomatas EJ, Tjamos EC (2016) Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl (this issue). doi:10.1007/s10526-015-9669-0

    Google Scholar 

  • Martelli GP, Boscia D, Porcelli F, Saponari M (2016) The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. Eur J Plant Pathol 144:235–243

    Article  Google Scholar 

  • Martínez-García P, Ruano-Rosa D, Schilirò E, Prieto P, Ramos C, Rodríguez-Palenzuela P, Mercado-Blanco J (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Massart S, Perazzolli M, Höfte M, Pertot I, Jijakli MH (2015) Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. BioControl 60:725–746

    Article  CAS  Google Scholar 

  • Melnick RL, Suárez C, Bailey BA, Backman PA (2011) Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biol Control 57:236–245

    Article  Google Scholar 

  • Melnick RL, Bailey BA, Backman PA (2013) Bacterial endophytes of perennial crops for management of plant disease. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 49–76

    Chapter  Google Scholar 

  • Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Rodríguez-Jurado D, Hervás A, Jiménez-Díaz RM (2004) Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Control 30:474–486

    Article  Google Scholar 

  • Mgbeahuruike AC, Sun H, Fransson P, Kasanen R, Daniel G, Karlsson M, Asiegbu FO (2011) Screening of Phlebiopsis gigantea isolates for traits associated with biocontrol of the conifer pathogen Heterobasidion annosum. Biol Control 57:118–129

    Article  Google Scholar 

  • Mgbeahuruike AC, Karlsson M, Asiegbu FO (2012) Differential expression of two hydrophobin genes (Pgh1 and Pgh2) from the biological control agent Phlebiopsis gigantean. Fungal Biol 116:620–629

    Article  CAS  PubMed  Google Scholar 

  • Mgbeahuruike AC, Kohler A, Asiegbu FO (2013) Expression analysis of the impact of culture filtrates from the biocontrol agent, Phlebiopsis gigantea on the conifer aathogen, Heterobasidion annosum s.s. transcriptome. Microb Ecol 66:669–681

    Article  CAS  PubMed  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  PubMed  Google Scholar 

  • Moreira AC, Domingos AC, Fontes AM, Semedo J, Melo E, Machado H, Reis M, Horta M, Cravador A (2007) Evaluation of cork and holm oak seedling viability to Phytophthora cinnamomi infection treated with compost and mycorrhizae fungi. IOBC/WPRS Bull 57:73–76

    Google Scholar 

  • New PB, Kerr A (1972) Biological control of crown gall: field measurements and glasshouse experiments. J Appl Bacteriol 35:279–287

    Article  Google Scholar 

  • Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pautasso M, Schlegel M, Holdenrieder O (2015) Forest health in a changing world. Microb Ecol 69:826–842

    Article  PubMed  Google Scholar 

  • Pearson RC, Gadoury DM (1987) Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology 77:1509–1514

    Article  Google Scholar 

  • Pérez-Jiménez RM (2008) Significant avocado diseases caused by fungi and oomycetes. Eur J Plant Sci Biotechnol 2:1–24

    Google Scholar 

  • Pertot I, Prodorutti D, Colombini A, Pasini L (2016) Trichoderma atroviride SC1 prevents Phaeomoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. BioControl (this issue). doi:10.1007/s10526-016-9723-6

    Google Scholar 

  • Pinto C, Gomes AC (2016) Vitis vinifera microbiome: from basic research to technological development. BioControl (this issue). doi:10.1007/s10526-016-9725-4

    Google Scholar 

  • Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes AC (2014) Unravelling the diversity of grapevine microbiome. PLoS ONE 9:e85622

    Article  PubMed  PubMed Central  Google Scholar 

  • Pliego C, Cazorla FM (2012) Biocontrol of tree root diseases. In: Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley Blackwell, New Jersey, pp 655–663

    Google Scholar 

  • Pliego C, López-Herrera C, Ramos C, Cazorla FM (2012) Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Mol Plant Pathol 13:226–239

    Article  CAS  PubMed  Google Scholar 

  • Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci USA 111:5598–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma J, Goossen-van de Geijn H (2016) Twenty-four years of Dutch Trig® application to control Dutch Elm Disease. BioControl (this issue). doi:10.1007/s10526-016-9731-6

    Google Scholar 

  • Prance GT (1994) Amazonian tree diversity and the potential for supply of non-timber forest products. In: Leakey RRB, Newton AC (eds) Tropical trees: the potential for domestication and the rebuilding of forest resources. HMSO, London, pp 7–15

    Google Scholar 

  • Prospero S, Rigling D (2013) Chestnut Blight. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CAB International, Wallingford, pp 318–339

    Chapter  Google Scholar 

  • Prospero S, Rigling D (2016) Using molecular markers to assess the establishment and spread of a mycovirus applied as a biological control agent against chestnut blight. BioControl (this issue). doi:10.1007/s10526-015-9713-0

    Google Scholar 

  • Ramos C, Matas IM, Bardaji L, Aragón IM, Murillo J (2012) Pseudomonas savastanoi pv. savastanoi: some like it knot. Mol Plant Pathol 13:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67:421–430

    Article  Google Scholar 

  • Ruano-Rosa D, López-Herrera CJ (2009) Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biol Control 51:66–71

    Article  Google Scholar 

  • Ruano-Rosa D, Mercado-Blanco J (2015) Combining biocontrol agents and organics amendments to manage soil-borne phytopathogens. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management, soil biology, vol 46. Springer International Publishing, Cham, pp 457–478

    Chapter  Google Scholar 

  • Ruano-Rosa D, Prieto P, Rincón AM, Gómez-Rodríguez MV, Valderrama R, Barroso JB, Mercado-Blanco J (2016) Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl (this issue). doi:10.1007/s10526-015-9706-z

    Google Scholar 

  • Ruehle JL (1973) Nematodes and forest trees—types of damage to tree roots. Ann Rev Phytopathol 11:99–118

    Article  Google Scholar 

  • Salazar-Garcia S, Cortés-Flores JI (1986) Root distribution of mature avocado trees growing in soils of different textures. Calif Avocado Soc Yearb 70:165–174

    Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabo I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Scheffer RJ, Voeten JGWF, Guries RP (2008) Biological control of Dutch elm disease. Plant Dis 92:192–200

    Article  Google Scholar 

  • Souza JC, Haga A, Souza MA (2003) Pragas da goiabeira. Tech Bull no. 71

  • Sun H, Paulin L, Alatalo E, Asiegbu FO (2011) Response of living tissues of Pinus sylvestris to the saprotrophic fungus Phlebiopsis gigantea. Tree Physiol 31:438–451

    Article  PubMed  Google Scholar 

  • Turnbull JW (2002) Tree domestication and the history of plantations. In: Squires VR (ed) The role of food, agriculture, forestry and fisheries in human nutrition, vol II. Encyclopedia of life support systems developed under auspices of UNESCOEOLSS Publishers, Oxford, pp 48–74

    Google Scholar 

  • Vanneste JL (2000) Fire Blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford

    Book  Google Scholar 

  • Varo A, Moral J, Lozano-Tóvar MD, Trapero A (2016) Development and validation of an inoculation method to assess the efficacy of biological treatments against Verticillium wilt in olive trees. BioControl (this issue). doi:10.1007/s10526-015-9710-3

    Google Scholar 

  • Vitullo D, Altieri R, Esposito A, Nigro F, Ferrara M, Alfano G, Ranalli G, De Cicco V, Lima G (2013) Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticillium dahliae on nursery-grown olive plants. Int J Environ Sci Technol 10:209–220

    Article  CAS  Google Scholar 

  • Wang N, Trivedi P (2013) Citrus Huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology 103:652–665

    Article  PubMed  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6:e02527-14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers for their comments and suggestions to improve an earlier version of the manuscript. Research on Verticillium wilt of olive in Jesús Mercado-Blanco’s lab supported by grants P07-CVI-02624 and P12-AGR-667 (Junta de Andalucía, Spain), AGL2009-07275 (Spanish MICINN/MINECO), and RECUPERA 2020 (MINECO-CSIC agreement), all co-funded by ERDF from EU. Research on bacterial biocontrol of avocado white root rot was supported by Grant AGL2014-52518-C2-1-R (Spanish MINECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Mercado-Blanco.

Additional information

Handling Editor: Eric Wajnberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazorla, F.M., Mercado-Blanco, J. Biological control of tree and woody plant diseases: an impossible task?. BioControl 61, 233–242 (2016). https://doi.org/10.1007/s10526-016-9737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9737-0

Keywords

Navigation