Skip to main content

Advertisement

Log in

Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV)

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The study of the biochemical and molecular mechanisms deriving from the host-pathogen-antagonist interaction is essential to understand the dynamics of infectious processes and can be useful for the development of new strategies to control phytopathogens, particularly viruses, against which chemical treatments have no effect. In this work, we demonstrate the ability of the rhizospheric fungus Trichoderma harzianum strain T-22 (T22) to induce defense responses in tomato (Solanum lycopersicum var. cerasiforme) against Cucumber mosaic virus (CMV, family Bromoviridae, genus Cucumovirus) strain Fny. A granule formulation containing T22 was used for treating the plants before, simultaneously or after the CMV inoculation, in order to study the molecular and biochemical aspects of the interaction between T22 and tomato against the virus. Reactive oxygen species (ROS) and the genes encoding for ROS scavenging enzymes were investigated. Histochemical analysis revealed a different increase in the superoxide anion (\( {\text{O}}_{2}^{ \bullet - } \)) and hydrogen peroxide (H2O2) content in plants infected by CMV alone or in the presence of T22, confirming the involvement of ROS in plant defense responses. Gene expression analysis suggested a definite improvement in oxidative stress when plants were treated with T22 after inoculation with CMV. In conclusion, our data indicate that Trichoderma harzianum T-22 stimulates the induction of tomato defense responses against CMV, an action that implies the involvement of ROS, pointing towards its use as a treatment rather than as a preventive measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akrami M, Golzary H, Ahmadzadeh M (2011) Evaluation of different combinations of Trichoderma species for controlling Fusarium rot of lentil. Afr J Biotechnol 10(14):2653–2658

    Google Scholar 

  • Allan AC, Lapidot M, Culver JN, Fluhr R (2001) An early Tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol 126:97–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bacsó R, Hafez YM, Király Z, Király L (2011) Inhibition of virus replication and symptom expression by reactive oxygen species in tobacco infected with Tobacco mosaic virus. Acta Phytopathol Entomol Hung 46(1):1–10

    Article  Google Scholar 

  • Benítez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Bouchez O, Huard C, Lorrain S, Roby D, Balague C (2007) Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiol 145(2):465–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, vanhoudt N, van Sanden S, van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168(4):309–316

    Article  CAS  PubMed  Google Scholar 

  • Edwardson JR, Christie RG (1991) Cucumoviruses. In: Edwardson JR, Christie RG (eds) CRC handbook of viruses infecting legumes. CRC Press Inc, Boca Raton Fla, USA, pp 293–319

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61(5):964–976

    Article  CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Ozaki K, Hyakumachi M (2013) Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29(2):193–200

    Article  PubMed Central  PubMed  Google Scholar 

  • Grieco F, Alkowni R, Saponari V, Savino V, Martelli GP (2000) Molecular detection of olive viruses. EPPO Bull 30:469–473

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology-Sgm 158:17–25

    Article  CAS  Google Scholar 

  • Inaba J, Kim BM, Shimura H, Masuta C (2011) Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-Silencing Suppressor and a Host Catalase. Plant Physiol 156(4):2026–2036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50

    Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146(4):1459–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhao YF, McCaig BC, Wingerd BA, Wang JH, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSTIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lot H, Marrou J, Quiot JB, Esvan C (1972) Contribution à l’étude du virus de la mosaique du cocombre (CMV). I. Méthode de purification rapide du virus. Ann Phytopathol 14:25–38

    Google Scholar 

  • Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126

    Article  CAS  PubMed  Google Scholar 

  • Mascia T, Santovito E, Gallitelli D, Cillo F (2010) Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol Plant Pathol 11(6):805–816

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Ohki ST (2012) Cucumber mosaic virus: viral genes as virulence determinants. Mol Plant Pathol 13(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Nuzzaci M, Bochicchio I, De Stradis A, Vitti A, Natilla A, Piazzolla P, Tamburro AM (2009) Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. J Virol Methods 155(2):118–121

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13(1):179–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 01 Jan 2011

  • Segarra G, van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11(1):90–96

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Sofo A, Tataranni G, Xiloyannis C, Dichio B, Scopa A (2004) Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6 (R) (Prunus cerasus × Prunus canescens) rootstock. Environ Exp Bot 76:33–38

    Article  Google Scholar 

  • Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J (2004) Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol 45(6):803–809

    Article  CAS  PubMed  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12(4):341–354

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37(1):1–20

    Article  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Cirvilleri G, Castello I, Aiello D, Polizzi G (2012) Evaluation of Trichoderma harzianum strain T22 as biological control agent of Calonectria pauciramosa. BioControl 57(5):687–696

    Article  Google Scholar 

  • Vitti A, Nuzzaci M, Scopa A, Tataranni G, Remans T, Vangronsveld J, Sofo A (2013) Auxin and cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with Cucumber mosaic virus (CMV) or exposed to cadmium. Int J Mol Sci 14(4):6889–6902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitham SA, Yang CL, Goodin MM (2006) Global impact: elucidating plant responses to viral infection. Mol Plant-Microbe Interact 19(11):1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inzé D, van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16(16):4806–4816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo SL, Lorito M (2006) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Amsterdam, The Netherlands, pp 107–130

    Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microb 65:1061–1070

    CAS  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed borne diseases of rice. Pest Manag Sci 68(1):60–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from University of Basilicata, Potenza, Italy. We thank Prof. Ippolito Camele (University of Basilicata) for microscopy analyses in the histochemical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Vitti.

Additional information

Handling Editor: Jesus Mercado Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitti, A., La Monaca, E., Sofo, A. et al. Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl 60, 135–147 (2015). https://doi.org/10.1007/s10526-014-9626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9626-3

Keywords

Navigation