Skip to main content
Log in

Identification of trophic interactions between Macrolophus caliginosus (Heteroptera: Miridae) and Myzus persicae (Homoptera: Aphididae) using real time PCR

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Understanding food web interactions in native or agricultural ecosystems is an important step towards establishing sustainable pest management strategies. While the role of generalist predators as biological control agents is increasingly appreciated, the study of trophic interactions between individual predator species and their prey provides practical difficulties. Recently, different approaches have been suggested to determine prey items from predator guts using molecular methods. Macrolophus caliginosus is a generalist predator active in herbaceous agro-ecosystems. We developed a system to identify the DNA of its prey after ingestion, using Myzus persicae as a model. Esterase (MpEST) and cytochrome oxidase I (MpCOI) genes were targeted in the aphid, while M. caliginosus COI gene was used as control for predator DNA. Real time PCR proved to be specific and sensitive enough to detect prey DNA upon ingestion after feeding experiments. The system provided a linear amplification response with only 10 fg of prey genomic DNA as template. The detection system of MpCOI gene was more sensitive than MpEST, while the detection period was similar for both genes. Possibilities for using the system in ecological and biosafety studies with regard to sustainable pest management are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agustí N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD, Symondson WOC (2003) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Mol Ecol 12:3467–3475

    Article  PubMed  CAS  Google Scholar 

  • Andow DA, Hilbeck A (2004) Science-based risk assessment for non-target effects of transgenic crops. Bioscience 54:637–649

    Article  Google Scholar 

  • Andow D, Lövei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24:749–751

    Article  PubMed  CAS  Google Scholar 

  • Arpaia S (2002) Effects of transgenic (Bt) crops on natural enemies. In: Pimentel D (ed) Encyclopedia of pest management. Marcel Dekker Inc., New York, pp 234–236

    Google Scholar 

  • Arpaia S, Di Leo GM, Fiore MC, Schmidt JEU, Scardi M (2007) Composition of arthropod species assemblages in Bt-expressing and near isogenic eggplants in experimental fields. Environ Entomol 36:213–227

    Article  PubMed  Google Scholar 

  • Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure and development. In: Waage J, Greathead D (eds) Insect parasitoids. Academic Press, London, pp 225–264

    Google Scholar 

  • Bhatti MA, Duan J, Head G, Jiang C, McKee MJ, Nickson TE, Pilcher CL, Pilcher CD (2005) Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods. Environ Entomol 34:1336–1345

    Article  Google Scholar 

  • Chen Y, Giles KL, Payton ME, Greenstone MH (2000) Identifying key cereal aphid predators by molecular gut analysis. Mol Ecol 9:1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Ann Rev Entomol 47:267–297

    Article  CAS  Google Scholar 

  • Dively GP (2005) Impact of transgenic VIP3A × Cry1Ab lepidopteran-resistant field corn on the nontarget arthropod community. Environ Entomol 34:1267–1291

    Article  Google Scholar 

  • Field LM, Blackman RL, Tyler-Smith C, Devonshire AL (1999) Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J 339:737–742

    Article  PubMed  CAS  Google Scholar 

  • Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–827

    Article  PubMed  CAS  Google Scholar 

  • Harwood JD, Obrycki JJ (2005) Quantifying aphid predation rates of generalist predators in the field. Eur J Entomol 102:335–350

    Google Scholar 

  • Harwood JD, Wallin WG, Obrycki JJ (2005) Uptake of Bt endotoxins by non-target herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Mol Ecol 14:2815–2823

    Article  PubMed  CAS  Google Scholar 

  • Hoogendoorn M, Heimpel GE (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Mol Ecol 10:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Jouen A, Traugott M (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142:344–352

    Article  Google Scholar 

  • Jouen A, Traugott M (2007) Revealing species-specific trophic links in soil food webs: molecular identification of scarab predators. Mol Ecol 16:1545–1557

    Article  CAS  Google Scholar 

  • Lang A (2003) Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia 134:1432–1939

    Article  Google Scholar 

  • Lucas E (2005) Intraguild predation among aphidophagous predators. Eur J Entomol 102:351–364

    Google Scholar 

  • Naranjo SE (2005) Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ Entomol 34:1193–1210

    Article  Google Scholar 

  • Obrist LB, Dutton A, Albajes R, Bigler F (2006) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–145

    Article  Google Scholar 

  • Perdikis DC, Lykouressis DP, Economou LP (1999) The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus on Myzus persicae. BioControl 44:281–289

    Article  Google Scholar 

  • Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350:669–674

    Article  Google Scholar 

  • Rabb RL, DeFoliart GR, Kennedy GG (1984) An ecological approach to managing insect populations. In: Huffaker CB, Rabb RL (eds) Ecological entomology. Wiley, New York, pp 697–728

    Google Scholar 

  • Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Ann Rev Entomol 43:421–447

    Article  CAS  Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    Article  Google Scholar 

  • Sampson AC, King VJ (1996) Macrolophus caliginosus, field establishment and pest control effect in protected tomatoes. IOBC/WPRS Bull 19:143–146

    Google Scholar 

  • Schmidt JEU (2006) The influence of transgenic plants expressing Bacillus thuringiensis ∂-endotoxins on arthropod diversity and trophic interactions in crop ecosystems. Dissertation, Swiss Federal Institute of Techology, Zurich

  • Schuh RT, Slater JA (1995) True bugs of the world (Hemiptera: Heteroptera). Cornell University Press, New York, 336 pp

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator–prey food-webs. Funct Ecol 19:751–762

    Article  Google Scholar 

  • Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Mol Ecol 13:2077–2088

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Frati F, Beckenbach AT, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Snyder WE, Wise DH (2001) Contrasting trophic cascades generated by a community of generalist predators. Ecology 82:1571–1583

    Article  Google Scholar 

  • Symondson WOC (2002a) Diagnostic techniques in carabid research. In: Holland J (ed) Agroecology of carabid beetles. Intercept, Andover, pp 137–164

    Google Scholar 

  • Symondson WOC (2002b) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  PubMed  CAS  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Ann Rev Entomol 47:561–594

    Article  CAS  Google Scholar 

  • Tedeschi R, de Clercq P, van Veire M, Tirry L (1999) Development and predation of Macrolophus caliginosus on different prey. Proceedings 51st International Symposium on Crop Protection, Gent, Belgium. Medelingen Wetenschappen, Universiteit Gent 64:235–240

  • Whitehouse MEA, Wilson LJ, Fitt GP (2005) A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ Entomol 34:224–1241

    Article  Google Scholar 

  • Zemková Rovenská G, Zemek R, Schmidt JEU, Hilbeck A (2005) Altered host plant preference of Tetranychus urticae and prey preference of its predator Phytoseiulus persimilis (Acari: Tetranychidae, Phytoseiidae) on transgenic Cry3Bb eggplants. Biol Control 33:293–300

    Article  Google Scholar 

  • Zhang GF, Lü ZC, Wan FH, Lövei GL (2007) Real-time PCR quantification of Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype remains in predator guts. Mol Ecol Notes 7:947–954

    Article  CAS  Google Scholar 

  • Zwahlen C, Andow D (2005) Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn. Environ Biosafety Res 4:113–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Grazia Maria Di Leo for maintaining the aphid colony and Fabienne Morgues for help in molecular validations. This study was supported by the ENEA External Relations Annual Research Fellowship Programme to JEUS and JRMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Arpaia.

Additional information

Genbank accession numbers: M. caliginosus COI: AY855089.

Handling Editor: Eric Lucas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J.E.U., Almeida, J.R.M., Rosati, C. et al. Identification of trophic interactions between Macrolophus caliginosus (Heteroptera: Miridae) and Myzus persicae (Homoptera: Aphididae) using real time PCR. BioControl 54, 383–391 (2009). https://doi.org/10.1007/s10526-008-9194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-008-9194-5

Keywords

Navigation