Skip to main content
Log in

Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa GRC1 exhibited strong antagonistic activity against Sclerotinia sclerotiorum, in vitro and in vivo. Scanning electron microscopic (SEM) studies showed morphological abnormalities such as perforation, lysis and fragmentation of hyphae of S. sclerotiorum caused by P. aeruginosa GRC1. This strain produced extracellular chitinase enzyme, the role of which was clearly demonstrated through Tn5 mutagenesis. Bacterization of peanut seeds with GRC1 resulted in increased seed germination and reduced stem-rot of peanut in S. sclerotiorum-infested soil by 97%. Other vegetative and yield plant parameters such as nodules per plant, pods and grain yield per plant were enhanced with a statistical significance in comparison to control. Neomycin resistant (GRC neo+1 ) bacterium was a good root colonizer and frequently isolated from rhizosphere of peanut plants. These findings showed P. aeruginosa GRC1 as a potential biocontrol agent against S. sclerotiorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SEM:

scanning electron microscopy

HCN:

hydrocyanic acid

CAS:

chrome azurol S

IAA:

indole acetic acid

TSM:

tryptic soy medium

PDA:

potato dextrose agar

CMM:

chitin minimal medium

Km:

kanamycin

neo:

neomycin

CMC:

carboxymethylcellulose

CFU:

colony forming unit

DAS:

days after sowing

ANOVA:

analysis of variants

References

  • Anas O. and Reeleder R.D. (1987). Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in québec muck soils. Phytopathology 77: 327–331

    Google Scholar 

  • Arora N.K., Kang S.C., Maheshwari D.K. (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential againstMacrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci. 81: 673–677

    Google Scholar 

  • Bakker A.W. and Schippers B. (1987). Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Microbiol. Biochem. 19: 451–457

    Article  CAS  Google Scholar 

  • Bakker P.A., Lamers H.M., Bakker A.W., Marugg J.D., Weisbeek P.J., Schippers B. (1986). The role of siderophore in potato tubers yield increase by Pseudomonas putida by a short relation potato. Neth. J. Plant Pathol. 92: 249–256

    Article  Google Scholar 

  • Bano N. and Musarrat J. (2002). Characterization of a new Pseudomonas aeruginosa NJ-15 as a potential biocontrol agent. Curr. Microbiol. 43: 182–186

    Google Scholar 

  • Bhatia S., Dubey R.C., Maheshwari D.K. (2005). Enhancement of plant growth and suppression of collar rot of sunflower caused by Sclerotium rolferii through fluorescent pseudomonas. Ind. Phytopathol. 58: 17–24

    Google Scholar 

  • Bhatia S., Bhatia S., Dubey R.C., Maheshwari D.K. (2003) Antagonistic effect of fluorescent pseudomonades against Macrophomina phaseolina that causes charcoal rot of groundnut. Ind. J. Exp. Biol. 41: 1442–1446

    Google Scholar 

  • Boulnois G.J., Varly J.M., Sharpe G.S., Franklin F.C.H. (1985) Transposon donor plasmid, base on ColIBP9, for use in Pseudomonas putida and a variety of the Gram-negative bacteria. Mol. Gen. Genet. 200: 65–67

    Article  PubMed  CAS  Google Scholar 

  • de Tempe J. (1963). The blotter method for seed health testing. Proc. Int. Seed Test Assoc. 28: 1933

    Google Scholar 

  • Deshwal V.K., Dubey R.C., Maheshwari D.K. (2003). Isolation of plant growth-promoting Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr. Sci. 84: 443–448

    Google Scholar 

  • Dowling D.N., O’ Gara F.(1994). Metabolites of Pseudomonas involved in biocontrol of plant diseases. TIBTECH 12: 133–141

    CAS  Google Scholar 

  • Dubey R.C., Dwivedi R.S. (1988) Effect of heavy metals on growth and survival of Macrophomina phaseolina (Tassi) Goid. Acta Bot. Ind. 16: 175–181

    Google Scholar 

  • Dunne C., Crowley J.J., Moënne-Locooz Y., Dowling D.N., de Bruijn P.J., O’ Gara F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltopholia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921–3931

    Article  CAS  Google Scholar 

  • Fridlender, M., J. Inbar and I. Chet, 1993. Biological control of soil borne plant pathogens by \(\beta\)-1,3-glucanase producing Pseudomonas cepacia. Soil Biol. Biochem. 25(9): 1211–1221

    Google Scholar 

  • Garbeva P., van Veen J.A., van Elas J.D. (2004). Assessment of the diversity and antagonism towards Rhizoctonia solani AG3 of Pseudomonas spp. in soil from different agricultural regimes. FEMS Microbiol. Ecol. 47: 51–64

    Article  CAS  PubMed  Google Scholar 

  • Gomez K.A. and Gomez A.A. (1984). Statistical Procedures for Agricultural Research. A Wiley Interscience Publication, John Wiley and Sons, New York, USA

    Google Scholar 

  • Gupta C.P., Sharma A., Dubey R.C., Maheshwari D.K. (1999). Pseudomonas aeruginosa as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios 99: 183–189

    PubMed  CAS  Google Scholar 

  • Gupta C.P., Dubey R.C., Maheshwari D.K. (2002). Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol. Fertl. Soil 35: 295–301

    Google Scholar 

  • Gupta C.P., Dubey R.C., Kang S.C., Maheshwari D.K. (2001). Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr. Sci. 81: 91–94

    Google Scholar 

  • Hofte M., Seong K.Y., Jurkevitch E., Verstraete W. (1991). Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: Ecological significance in soil. Plant Soil 130: 249–257

    Article  CAS  Google Scholar 

  • Howel C.R. and Stipanovic C. (1980) Suppression of Pythium ultimum induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70: 712–715

    Google Scholar 

  • Kloepper, J.W., R. Lifshitz and A. Novacky, 1988. Pseudomonas inoculation to benefit plant production. Animal Plant Sci. 60–64

  • Kumar Dileep B.S., Dubey H.C. (1992). Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol. Biochem. 24: 539–542

    Article  Google Scholar 

  • Lee W.H. and Kobyashi K. (1980). Isolation and identification of antifungal Pseudomonas sp. from sugar beet roots and the use of antibiotic products. Korean J. Plant Pathol. 4: 264–270

    Google Scholar 

  • Lim H.S., Kim S.D. (1994). The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL1 as a biocontrol agent. J. Microbiol. Biotechnol. 4: 134–140

    CAS  Google Scholar 

  • Lim, H.S. and S.D. Kim, 1995. The role and characterization of \(\beta\)-1,3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YLP-1. Curr. Microbiol. 33(4): 295–301

  • Palleroni N.J. (1984). Gram-negative aerobic rods and cocci: family I Pseudomonadaceae: genus I Pseudomonas. In: Krieg N.R., Holt J.G. (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 1. William and Wilkins Co, Baltimore, MD, pp. 141–199

    Google Scholar 

  • Purdy L.H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69: 875–880

    Google Scholar 

  • Ran L.X., Liu C.I., Wu G.J., van Loon L.C. and Bakker P.A.H.M. (2005). Suppression of bacterial wilt in Eucalyptus urophylla by fluorescens Pseudomonas spp. in China. Biol. Control 32: 111–120

    Article  Google Scholar 

  • Schipper B., Bakker A.W., Bakker P.A.H.M. (1987). Interaction of deleterious and beneficial rhizosphere microorganism and the effect on cropping practices. Ann. Rev. Phytopathol 25: 339–358

    Article  Google Scholar 

  • Schwyn B. and Neilands J.B. (1987). Universal assay for the detection and determination of siderophores. Anal. Biochem. 160: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Seong K.Y., Hofte M., Verstraete W. (1992). Acclimatization of plant growth promoting Pseudomonas strain 7NSK2 in soil. Effect on population dynamics and plant growth. Soil Biol. Biochem. 24: 75–759

    Article  Google Scholar 

  • Sivan A. and Chet I. (1989). Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum TK-1. J. Ferment. Bioeng. 78: 407–412

    Google Scholar 

  • Skidmore A.M. and Dickinson C.H. (1976). Colony interaction and hyphal interference between Septoria nodorum and phylloplane fungi. Trans. Brit. Mycol. Soc. 66: 57–74

    Article  Google Scholar 

  • Steadman J.R. (1979). Control of plant diseases caused by Sclerotinia species. Symposium of Sclerotinia. Am. Phytopathol. Soc. 79: 904–907

    Google Scholar 

  • Upadhyay R.S., Jayaswal R.K. (1992) Pseudomonas cepacia causes mycelial deformities and inhibition of condition in phytopathogenic fungi. Curr. Microbiol. 24: 181–187

    Article  Google Scholar 

  • Validov S., Mavrodi O., De La Fuente L., Boronin A., Weller D., Thomasho L., Mavrodi D. (2005). Antagonistic activity among 2,4-diacetyl phloroglucinol producing fluorescent Pseudomonas sp. FEMS Micribiol. Lett. 242: 249–256

    Article  CAS  Google Scholar 

  • Weller D.M. and Cook R.J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463–469

    Article  Google Scholar 

  • Zhou T. and Boland G.J. (1999). Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 21: 93–99

    Article  CAS  Google Scholar 

  • Zhou T., Reeleder R.D. (1989). Application of Epicoccum purpurascens spores to control white mold of bean. Plant Dis. 73: 639-642

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr A. Ambani for the help with the Scanning Electron photo microscopy. This work was financially supported by TMOP - CSIR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Maheshwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, C.P., Kumar, B., Dubey, R.C. et al. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51, 821–835 (2006). https://doi.org/10.1007/s10526-006-9000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-006-9000-1

Key words

Navigation