Skip to main content
Log in

Interpreting Behavior Genetic Models: Seven Developmental Processes to Understand

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Behavior genetic findings figure in debates ranging from urgent public policy matters to perennial questions about the nature of human agency. Despite a common set of methodological tools, behavior genetic studies approach scientific questions with potentially divergent goals. Some studies may be interested in identifying a complete model of how individual differences come to be (e.g., identifying causal pathways among genotypes, environments, and phenotypes across development). Other studies place primary importance on developing models with predictive utility, in which case understanding of underlying causal processes is not necessarily required. Although certainly not mutually exclusive, these two goals often represent tradeoffs in terms of costs and benefits associated with various methodological approaches. In particular, given that most empirical behavior genetic research assumes that variance can be neatly decomposed into independent genetic and environmental components, violations of model assumptions have different consequences for interpretation, depending on the particular goals. Developmental behavior genetic theories postulate complex transactions between genetic variation and environmental experiences over time, meaning assumptions are routinely violated. Here, we consider two primary questions: (1) How might the simultaneous operation of several mechanisms of gene–environment (GE)-interplay affect behavioral genetic model estimates? (2) At what level of GE-interplay does the ‘gloomy prospect’ of unsystematic and non-replicable genetic associations with a phenotype become an unavoidable certainty?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Other aims that have been claimed as constitutive of scientific inquiry include having true answers to our questions (Kelly and Glymour 2004), obtaining knowledge (Nagel 1967), advancing empirically adequate theories (van Fraassen 1980, 1986), having understanding (de Regt 2015), and gaining the ability to control nature (Keller 1985). We invite the reader to think about how what we say in this paper matters with respect to these other aims as well, though we will not discuss them explicitly.

  2. Modern behavior genetic models typically rely on structural equation modeling approaches, rather than simple multiplication and subtraction.

  3. In this manuscript, we focus on quantitative G × E, meaning the effect sizes of genes and environments are interdependent, rather than qualitative G × E, meaning different genes may operate across groups.

  4. Caspi et al. (2014) report longitudinal data on the psychometric structure of psychopathology across ages 18–38 years with approximately five waves for 11 disorders. Supplemental Table 1 reports means and standard deviations for each wave. When mean levels of psychopathology increase from one wave to the next, variance in psychopathology also increases (r = 0.78).

References

  • Bates TC, Maher BS, Medland SE, McAloney K, Wright M, Hansell NK et al (2018) The nature of nurture: using a virtual-parent design to test parenting effects on children’s educational attainment in genotyped families. Twin Res 21:73–83

    Google Scholar 

  • Baumert A, Schmitt M, Perugini M, Johnson W, Blum G et al (2017) Integrating personality structure, personality process, and personality development. Eur J Personal 31:503–528

    Article  Google Scholar 

  • Beam CR, Turkheimer E (2013) Phenotype–environment correlations in longitudinal twin models. Dev Psychopathol 25:7–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Beam CR, Turkheimer E, Dickens WT, Davis DW (2015) Twin differentiation of cognitive ability through phenotype to environment transmission: the Louisville Twin Study. Behav Genet 45:622–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell AM, Saltz JB (2017) Profitable interplay between the study of human and nonhuman personality. Eur J Personal 31:532–533

    Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 31:532–533

    Google Scholar 

  • Belsky DW, Domingue BW, Wedow R, Arseneault L, Boardman JD, Caspi A et al (2018) Genetic analysis of social-class mobility in five longitudinal studies. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1801238115

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengston SE, Dahan RA, Donaldson Z, Phelps SM, van Oers K, Sih A, Bell AM (2018) Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol. https://doi.org/10.1038/s41559-017-0411-4

    Article  PubMed  Google Scholar 

  • Braddon-Mitchell D (2001) Lossy laws. Noûs 35:260–277

    Article  Google Scholar 

  • Brant AM, Munakata Y, Boomsma DI, DeFries JC, Haworth CMA, Keller MC et al (2013) The nature and nurture of high IQ: an extended sensitive period for intellectual development. Psychol Sci 24:1487–1495

    Article  PubMed  Google Scholar 

  • Briley DA, Tucker-Drob EM (2013) Explaining the increasing heritability of cognitive ability across development: a meta-analysis of longitudinal twin and adoption studies. Psychol Sci 24:1704–1713

    Article  PubMed  Google Scholar 

  • Briley DA, Tucker-Drob EM (2014) Genetic and environmental continuity in personality development: a meta-analysis. Psychol Bull 140:1303–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Briley DA, Tucker-Drob EM (2017) Comparing the developmental genetics of cognition and personality over the lifespan. J Personal 85:51–64

    Article  Google Scholar 

  • Briley DA, Harden KP, Tucker-Drob EM (2014) Child characteristics and parental educational expectations: evidence for transmission with transaction. Dev Psychol 50:2614–2632

    Article  PubMed  PubMed Central  Google Scholar 

  • Briley DA, Livengood J, Derringer J (2018) Behavior genetic frameworks of causal reasoning for personality psychology. Eur J Personal 32:202–220

  • Bronfenbenner U, Ceci SJ (1994) Nature-nurture reconceptualized in developmental perspective: a bioecological model. Psychol Rev 101:568–586

    Article  Google Scholar 

  • Caspi A, Houts RM, Belsky DW, Goldman-Mellor SJ, Harrington H, Israel S et al (2014) The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin Psychol Sci 2:119–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Chabris CF, Hebert BM, Benjamin DJ, Beauchamp J, Cesarini D, Van der Loos M et al (2012) Most reported genetic associations with general intelligence are probably false positives. Psychol Sci 23:1314–1323

    Article  PubMed  Google Scholar 

  • Chabris CF, Lee JJ, Cesarini D, Benjamin DJ, Laibson DI (2015) The fourth law of behavior genetics. Curr Dir Psychol Sci 24:304–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheesman R, Selzam S, Ronald A, Dale PS, McAdams TA, Eley TC, Plomin R (2017) Childhood behavior problems show the greatest gap between DNA-based and twin heritability. Transl Psychiatry 7:1284

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho CE, Norman M (2013) Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 208:249–254

    Article  PubMed  Google Scholar 

  • Conley D, Laidley T, Belsky DW, Fletcher JM, Boardman JD, Domingue BW (2016) Assortative mating and differential fertility by phenotype and genotype across the 20th century. Proc Natl Acad Sci USA 113:6647–6652

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuijpers P, Smit F, Penninx BWJH, de Graaf R, ten Have M, Beekman ATF (2010) Economic costs of neuroticism: a population-based study. Arch Gen Psychiatry 67:1086–1093

    Article  PubMed  Google Scholar 

  • D’Onofrio BM, Eaves LJ, Murelle L, Maes HH, Spilka B (1999) Understanding biological and social influences on religious affiliation, attitudes, and behaviors: a behavior genetic perspective. J Personal 67:953–984

    Article  Google Scholar 

  • Dar-Nimrod I, Heine SJ (2011) Genetic essentialism: on the deceptive determinism of DNA. Psychol Bull 137:800–818

    Article  PubMed  PubMed Central  Google Scholar 

  • De Regt HW (2015) Scientific understanding: truth or dare? Synthese 192:3781–3797

    Article  Google Scholar 

  • Dickens WT, Flynn JR (2001) Heritability estimates versus large environmental effects: the IQ paradox resolved. Psychol Rev 108:349–369

    Article  Google Scholar 

  • Domingue BW, Fletcher J, Conley D, Boardman JD (2014) Genetic and educational assortative mating among US adults. Proc Natl Acad Sci USA 111:7996–8000

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate Gene-by-Environment Interaction research in psychiatry. Am J Psychiatry 168:1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan LE, Pollastri AR, Smoller JW (2014) Mind the gap: why many geneticists and psychological scientists have discrepant views about gene–environment interaction (G × E) research. Am Psychol 69:249–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Earman J (1993) Underdetermination, realism, and reason. Midwest Studies Philos 18:19–38

    Article  Google Scholar 

  • Eaves L, Heath A, Martin N, Maes H, Neale M et al (1999) Comparing the biological and cultural inheritance of personality and social attitudes in the Virginia 30,000 study of twins and their relatives. Twin Res 2:62–80

    Article  PubMed  Google Scholar 

  • Falconer DS (1960) An introduction to quantitative genetics. Ronald, New York

    Google Scholar 

  • Forster M (2002) Predictive accuracy as an achievable goal of science. Philos Sci 69:S124–S134

    Article  Google Scholar 

  • Forster M, Sober E (1994) How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions. Br J Philos Sci 45:1–35

    Article  Google Scholar 

  • Fraley RC, Roisman GI, Haltigan JD (2013) The legacy of early experiences in development: formalizing alternative models of how early experiences are carried forward over time. Dev Psychol 49:109–126

    Article  PubMed  Google Scholar 

  • Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M et al (2013) Emergence of individuality in genetically identical mice. Science 340:756–759

    Article  PubMed  Google Scholar 

  • Glymour C (1970) Theoretical equivalence and the semantic view of theories. Philos Sci 80:286–297

    Article  Google Scholar 

  • Haberstick BC, Lessem JM, Hewitt JK, Smolen A, Hopfer CJ, Halpern CT et al (2014) MAOA genotype, childhood maltreatment, and their interaction in the etiology of adult antisocial behaviors. Biol Psychiatry 75:25–30

    Article  PubMed  Google Scholar 

  • Haberstick BC, Boardman JD, Wagner B, Smolen A, Hewitt JK, Killeya-Jones LA et al (2016) Depression, stressful life events, and the impact of variation in the serotonin transporter: findings from the National Longitudinal Study of Adolescent to Adult Health (Add Health). PLoS ONE 11:e0148373

    Article  PubMed  PubMed Central  Google Scholar 

  • Hankin BL, Oppenheimer C, Jenness J, Barrocas A, Shapero BG, Goldband J (2009) Developmental origins of cognitive vulnerabilities to depression: review of processes contributing to stability and change across time. J Clin Psychol 65:1327–1338

    Article  PubMed  PubMed Central  Google Scholar 

  • Harden KP, Quinn PD, Tucker-Drob EM (2011) Genetically influenced change in sensation seeking drives the rise of delinquent behavior during adolescence. Dev Sci 15:150–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Harden KP, Patterson MW, Briley DA, Engelhardt LE, Kretsch N et al (2015) Developmental changes in genetic and environmental influences on rule-breaking and aggression: age and pubertal development. J Child Psychol Psychiatry 56:1370–1379

    Article  PubMed  PubMed Central  Google Scholar 

  • Hausman DM, Stern R, Weinberger N (2014) Systems without a graphical causal representation. Synthese 19:1925–1930

    Article  Google Scholar 

  • Haworth CMA, Wright MJ, Luciano M, Martin NG, de Geus EJC, van Beijsterveldt CEM et al (2010) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry 15:1112–1120

    Article  PubMed  Google Scholar 

  • Hugh-Jones D, Verweij KJH, Pourcain B, Abdellaoui A (2016) Assortative mating on educational attainment leads to genetic spousal resemblance for polygenic scores. Intelligence 59:103–108

    Article  Google Scholar 

  • Johnson W (2007) Genetic and environmental influences on behavior: capturing all the interplay. Psychol Rev 114:423–440

    Article  PubMed  Google Scholar 

  • Johnson W, Penke L, Spinath FM (2011) Heritability in the era of molecular genetics: some thoughts for understanding genetic influences on behavioural traits. Eur J Personal 25:254–266

    Article  Google Scholar 

  • Kandler C, Papendick M (2017) Behavior genetics and personality development: a methodological and meta-analytic review. In: Specht J (ed) Personality development across the lifespan. Academic, Cambridge, p 473–495

    Chapter  Google Scholar 

  • Kandler C, Zapko-Willmes A (2017) Theoretical perspectives on the interplay of nature and nurture in personality development. In: Specht J (ed) Personality development across the lifespan. Academic, Cambridge, p 101–115

    Chapter  Google Scholar 

  • Keller EF (1985) Reflections on gender and science. Yale University Press, New Haven

    Google Scholar 

  • Keller MC (2014) Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry 75:18–24

    Article  PubMed  Google Scholar 

  • Keller MC, Medland SE, Duncan LE (2010) Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav Genet 40:377–393

    Article  PubMed  Google Scholar 

  • Kelly K, Glymour C (2004) Why probability does not capture the logic of scientific justification. In: Hitchcock C (ed) Contemporary debates in the philosophy of science. Blackwell, Oxford

    Google Scholar 

  • Kendler KS (2008) Explanatory models for psychiatric illness. Am J Psychiatry 165:695–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendler KS, Baker JH (2007) Genetic influences on measures of the environment: a systematic review. Psychol Med 37:615–626

    Article  PubMed  Google Scholar 

  • Klahr AM, Burt SA (2014) Elucidating the etiology of individual differences in parenting: a meta-analysis of behavioral genetic research. Psychol Bull 140:544–586

    Article  PubMed  Google Scholar 

  • Koellinger PD, Harden KP (2018) Using nature to understand nurture. Science 359:386–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE, et al (2018) The nature of nurture: effects of parental genotypes. Science 359:424–428

    Article  PubMed  Google Scholar 

  • Krapohl E, Plomin R (2016) Genetic link between family socioeconomic status and children’s educational achievement estimated from genome-wide SNPs. Mol Psychiatry 21:437–443

    Article  PubMed  Google Scholar 

  • Krapohl E, Rimfeld K, Shakeshaft NG, Trzaskowski M, McMillan A, Pingault J-B et al (2014) The high heritability of educational achievement reflects many genetically influences traits, not just intelligence. Proc Natl Acad Sci USA 42:15273–15278

    Article  Google Scholar 

  • Krapohl E, Hannigan LJ, Pingault J-B, Patel H, Kadeva N, Curtis C et al (2017) Widespread covariation of early environmental exposures and trait-associated polygenic variation. Proc Natl Acad Sci USA 114:11727–11732

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z et al (2002) 2000 CDC growth charts for the United States: methods and development. DHHS Publication No. (PHS) 2002-1696

  • Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M et al (2018) Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet 50:1112–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Vitányi P (1997) An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lucas RE (2007) Adaptation and the set-point model of subjective well-being: does happiness change after major life events? Curr Dir Psychol Sci 16:75–79

    Article  Google Scholar 

  • Lynch KE (2017) Heritability and causal reasoning. Biol Philos 32:25–49

    Article  Google Scholar 

  • Manuck SB, McCaffery JM (2014) Gene–environment interaction. Annu Rev Psychol 65:41–70

    Article  PubMed  Google Scholar 

  • McGue M, Wette R, Rao DC (1989) Path analysis under generalized marital resemblance: evaluation of the assumptions underlying the mixed homogamy model by the Monte Carlo method. Genet Epidemiol 6:373–388

    Article  PubMed  Google Scholar 

  • Mõttus R, Allik J, Hřebíčková M, Kööts-Ausmees L, Realo A (2016) Age differences in the variance of personality characteristics. Eur J Personal 30:4–11

    Article  Google Scholar 

  • Mõttus R, Soto CJ, Slobodskaya HR (2017) Are all kids alike? The magnitude of individual differences in personality characteristics tends to increase from early childhood to early adolescence. Eur J Personal 31:313–328

    Article  Google Scholar 

  • Mõttus R, Briley DA, Zheng A, Mann FD, Engelhardt LE, Tackett JL et al. Kids becoming less alike: a behavioral genetic analysis of developmental increases in personality variance from childhood to adolescence. J Personal Soc Psychol. https://www.researchgate.net/publication/323112699_Kids_becoming_less_alike_A_behavioral_genetic_analysis_of_developmental_increases_in_personality_variance_from_childhood_to_adolescence?enrichId=rgreq-6517f0bb889b3e63a2cf940f156fd788-XXX&enrichSource=Y292ZXJQYWdlOzMyMzExMjY5OTtBUzo2MDQyMjA4Njg4MTY4OTZAMTUyMTA2ODg4OTAwNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf

  • Nagel E (1967) The nature and aim of science. In: S Morgenbesser (ed) Philosophy of science today. Basic Books, New York

    Google Scholar 

  • Nivard MG, Boomsma DI (2016) Genetics: from molecule to society. Curr Biol 26:R1194–R1196

    Article  PubMed  Google Scholar 

  • Norton J (2008) Must evidence underdetermine theory? In: Carrier M, Howard D, Kourany J (eds) The challenge of the social and the pressure of practice: science and values revisited. University of Pittsburgh Press, Pittsburgh, p 17–44

    Chapter  Google Scholar 

  • NWEA (2015) 2015 NWEA MAP growth normative data. https://www.nwea.org/content/uploads/2015/11/Normative-Data-2015.pdf

  • Plomin R, Daniels D (1987) Why are children from the same family so different from one another? Behav Brain Sci 10:1–60

    Article  Google Scholar 

  • Plomin R, DeFries JC, Loehlin JC (1977) Genotype–environment interaction and correlation in the analysis of human behavior. Psychol Bull 84:309–322

    Article  PubMed  Google Scholar 

  • Plomin R, DeFries JC, Knopik VS, Neiderhiser JM (2016) Top 10 replicated findings from behavioral genetics. Perspect Psychol Sci 11:3–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 47:702–709

    Article  PubMed  Google Scholar 

  • Popper K (1957) The aim of science. Ratio 1:24–35

    Google Scholar 

  • Purcell S (2002) Variance components models for gene–environment interaction in twin analysis. Twin Res Hum Genet 5:554–571

    Article  Google Scholar 

  • Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW et al (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340:1467–1471

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts BW, Walton KE, Viechtbauer W (2006) Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychol Bull 132:1–25

    Article  PubMed  Google Scholar 

  • Roberts BW, Luo J, Briley DA, Chow PI, Su R, Hill PL (2017) A systematic review of personality trait change through intervention. Psychol Bull 143:117–141

    Article  PubMed  Google Scholar 

  • Saltz JB (2011) Natural genetic variation in social environment choice: context-dependent gene–environment correlation in Drosophila melanogaster. Evolution 8:2325–2334

    Article  Google Scholar 

  • Saltz JB (2013) Genetic composition of social groups influence male aggressive behaviour and fitness in natural genotypes of Drosophila melanogaster. Proc R Soc Lond B 280:20131926

    Article  Google Scholar 

  • Saltz JB (2014) Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster. Heredity 118:340–347

    Article  Google Scholar 

  • Saltz JB, Foley BR (2011) Natural genetic variation in social niche construction: social effects of aggression drive disruptive sexual selection in Drosophila melanogaster. Am Nat 177:645–654

    Article  PubMed  Google Scholar 

  • Saltz JB, Nuzhdin S (2014) Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol Evol 29:8–14

    Article  PubMed  Google Scholar 

  • Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J (2018) Why does the magnitude of genotype-by-environment interaction vary? Ecol Evol 8:6342–6353

    Article  PubMed  PubMed Central  Google Scholar 

  • Samek DR, Bailey J, Hill KG, Wilson S, Lee S, Keyes MA et al (2016) A test-replicate approach to candidate gene research on addiction and externalizing disorders: a collaboration across five longitudinal studies. Behav Genet 46:608–626

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayood K (2005) Introduction to data compression. Elsevier, San Francisco

    Google Scholar 

  • Scarr S, McCartney K (1983) How people make their own environments: a theory of genotype → environment effects. Child Dev 54:424–435

    PubMed  Google Scholar 

  • Schmitt D, Realo A, Voracek M, Allik J (2008) Why can’t a man be more like a woman? Sex differences in Big Five personality traits across 55 cultures. J Personal Soc Psychol 94:168–182

    Article  Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Stanford PK (2001) Refusing the devil’s bargain: what kind of underdetermination should we take seriously? Philos Sci 68:S1–S12

    Article  Google Scholar 

  • Stanford PK (2006) Exceeding our grasp: science, history, and the problem of unconceived alternatives. Oxford University Press, New York

    Book  Google Scholar 

  • Tabery J (2014) Beyond versus: the struggle to understand the interaction of nature and nurture. MIT Press, Boston

    Book  Google Scholar 

  • Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP et al (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452:638–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Tropf FC, Lee SH, Verwij RM, Stulp G, van der Most PJ et al (2017) Hidden heritability due to heterogeneity across seven populations. Nat Hum Behav 1:757–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker-Drob EM (2009) Differentiation of cognitive abilities across the life span. Dev Psychol 45:1097–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker-Drob EM (2011) Global and domain-specific changes in cognition throughout adulthood. Dev Psychol 47:331–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker-Drob EM (2012) Preschools reduce early academic achievement gaps: a longitudinal twin approach. Psychol Sci 23:310–319

    Article  PubMed  Google Scholar 

  • Tucker-Drob EM (2017) Motivational factors as mechanisms of gene–environment transactions in cognitive development and academic achievement. In: Elliot A, Dweck C, Yeager D (eds) Handbook of competence and motivation, 2nd edn. Guilford Press, New York

    Google Scholar 

  • Tucker-Drob EM, Bates TC (2016) Large cross-national differences in Gene × Socioeconomic Status interaction on intelligence. Psychol Sci 27:138–149

    Article  PubMed  Google Scholar 

  • Tucker-Drob EM, Briley DA (2014) Continuity of genetic and environmental influences on cognition across the life span: a meta-analysis of longitudinal twin and adoption studies. Psychol Bull 140:949–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker-Drob EM, Briley DA (in press) Theoretical concepts in the genetics of personality development. In McAdams D, Shiner R, Tackett JL (eds), The Handbook of Personality Development

  • Tucker-Drob EM, Harden KP (2012) Early childhood cognitive development and parental cognitive stimulation: evidence for reciprocal gene–environment transactions. Dev Sci 15:250–259

    Article  PubMed  Google Scholar 

  • Tucker-Drob EM, Briley DA, Harden KP (2013) Genetic and environmental influences on cognition across development and context. Curr Dir Psychol Sci 22:349–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker-Drob EM, Briley DA, Engelhardt LE, Mann FD, Harden KP (2016) Genetically-mediated associations between measures of childhood character and academic achievement. J Personal Soc Psychol 111:790–815

    Article  Google Scholar 

  • Turkheimer E (1998) Heritability and biological explanation. Psychol Rev 105:782–791

    Article  PubMed  Google Scholar 

  • Turkheimer E (2000) Three laws of behavior genetics and what they mean. Curr Dir Psychol Sci 9:160–164

    Article  Google Scholar 

  • Turkheimer E, Gottesman II (1991) Individual differences and the canalization of human behavior. Dev Psychol 27:18–22

    Article  Google Scholar 

  • Turkheimer E, Gottesman II (1996) Simulating the dynamics of genes and environment in development. Dev Psychopathol 8:667–677

    Article  Google Scholar 

  • Turkheimer E, Waldron M (2000) Nonshared environment: a theoretical, methodological, and quantitative review. Psychol Bull 126:78–108

    Article  PubMed  Google Scholar 

  • van Fraassen BC (1980) The scientific image. Oxford University Press, Oxford

    Book  Google Scholar 

  • van Fraassen BC (1986) Aim and structure of scientific theories. Stud Logic Found Math 144:307–318

    Article  Google Scholar 

  • van der Sluis S, Posthuma D, Dolan CVD (2012) A note on false positives and power in G × E modelling of twin data. Behav Genet 42:170–186

    Article  PubMed  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Wallace C, Freeman P (1987) Estimation and inference by compact coding. J R Stat Soc B 49:240–251

    Google Scholar 

  • Wheeler B (2016) Simplicity, language-dependency and the best system account of laws. Theoria 31:189–206

    Article  Google Scholar 

  • Yengo L, Robinson MR, Keller MC, Kemper KE, Yang Y, Trzaskowski M et al (2018) Imprint of assortative mating on the human genome. Preprint posted on bioRxivorg. https://doi.org/10.1101/300020

  • Zeng J, de Vlaming R, Wu Y, Robinson M, Lloyd-Jones L, Yengo L et al (2018) Signatures of negative selection in the genetic architecture of human complex traits. Nat Genet 50:746–753

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The production of this manuscript was supported by a Grant from the John Templeton Foundation (JTF58792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Briley.

Ethics declarations

Conflict of interest

Daniel A. Briley, Jonathan Livengood, Jaime Derringer, Elliot M. Tucker-Drob, R. Chris Fraley, and Brent W. Roberts declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briley, D.A., Livengood, J., Derringer, J. et al. Interpreting Behavior Genetic Models: Seven Developmental Processes to Understand. Behav Genet 49, 196–210 (2019). https://doi.org/10.1007/s10519-018-9939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-018-9939-6

Keywords

Navigation