Skip to main content
Log in

Seismic design and retrofit of frame structures with hysteretic dampers: a simplified displacement-based procedure

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper describes an effective and easy to use displacement-based procedure for seismic design or retrofit of frame structures equipped with hysteretic dampers, taking into account the flexibility of the supporting brace that is usually provided to connect the device to the external frame. The proposed framework leads the designer to the definition of a complete set of dissipative braces mechanical properties able to provide a desired performance level. Some initial assumptions related to the equivalent damped brace system have to be set and checked throughout the procedure. The method is widely explained step by step, differentiating the case of linear elastic and nonlinear behavior of the bare frame. The capacity curve of the braced frame is built by means of simple analytical relations and approximated by a bilinear or trilinear curve depending on the bare frame behavior. Two case studies are provided to demonstrate the effectiveness of the suggested procedure for both cases of new construction and existing building, obtaining a satisfactory matching between analytical target and numerical capacity curves. The reliability of the design framework is finally assessed by means of static and dynamic nonlinear analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • ATC (1996) Seismic evaluation and retrofit of concrete buildings. ATC-40, Applied Technology Council, Redwood City, California

  • Barbagallo F, Bosco M, Marino EM, Rossi PP, Stramondo PR (2017) A multi-performance design method for seismic upgrading of existing RC frames by BRBs. Earthq Eng Struct Dyn 46:1099–1119

    Article  Google Scholar 

  • Bergami AV, Nuti C (2010). A design procedure for the seismic protection of infilled frames by dissipative braces. In: Proceedings of 34th IABSE symposium on large structures and infrastructures for environmentally constrained and urbanised areas, ISBN: 978-385748-122-2, pp 272–273. Venice, 22–24 September 2010

  • Bergami AV, Nuti C (2013) A design procedure of dissipative braces for seismic upgrading. Earthq Struct 4(1):85–108

    Article  Google Scholar 

  • Bergami AV, Nuti C (2015a). A design procedure for seismic retrofitting of reinforced concrete frame and concentric braced steel buildings with dissipative bracings. In: Proceedings of COMPDYN 2015, 25–27 May 2015 Crete Island, Greece. 12

  • Bergami AV, Nuti C (2015b) Experimental tests and global modeling of masonry infilled frames. Earthq Struct 9(2):281–303

    Article  Google Scholar 

  • Bergami AV, Liu X, Nuti C (2015) Proposal and application of the incremental modal pushover analysis (IMPA). In: Proceedings of IABSE conference—structural engineering: providing solutions to global challenges, 23–25 September 2015, Geneva, Switzerland

  • Bergami AV, Forte A, Lavorato D, Nuti C (2017) Proposal of a incremental modal pushover analysis (IMPA). Earthq Struct 13(6):539–549. https://doi.org/10.12989/eas.2017.13.6.539

    Google Scholar 

  • Bozzo LM, Barbat AH (1999) Diseño sismorresistente de edificios. Técnicas convencionales y avanzadas. Editorial Reverte, Barcelona (in Spanish)

    Google Scholar 

  • Cahis X (2000) Desarrollo de un nuevo disipador de energía para diseño sismorresistente. Análisis numérico y validación experimental de su comportamiento. Dissertation (in Spanish)—Universitat Politècnica de Catalunya

  • Cahis X, Bozzo LM, Torres L, Foti D (1997) An energy dissipating device for seismic protection of masonry infill walls. In: ANIDIS procedia—Taormina

  • Chopra AK (1997) Dynamics of structures: theory and application to earthquake engineering. Prentice-Hall Ltd., Englewood Cliffs

    Google Scholar 

  • Christopoulos C, Filiatrault A (2007) Principles of passive supplemental damping and seismic isolation. IUSS Press—Istituto Universitario di Studi Superiori di Pavia, Pavia

    Google Scholar 

  • Clark P, Aiken I, Kasai K, Ko E, Kimura I (1999) Design procedures for buildings incorporating hysteretic damping devices. In: Proceedings of the 68th annual convention SEAOC, pp 355–37

  • Durucan C, Dicleli M (2010) Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link. Eng Struct 32:2995–3010

    Article  Google Scholar 

  • Dwairi HM, Kowlsky MJ, Nau JM (2007) Equivalent damping in support of direct displacement-based design. J Earthq Eng 11:512–530

    Article  Google Scholar 

  • EC8 (2003) Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard EN 1998-1, Brussels

  • EC8 (2005) Design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Standard EN 1998-1, Brussels

  • Fajfar P (2000) A nonlinear analysis method for performance based seismic design. Earthq Spectra 16(3):573–592

    Article  Google Scholar 

  • FEMA-274 (1997) NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency Publication, Washington, p 274

    Google Scholar 

  • FEMA—ASCE 356 (2000) Prestandard and commentary for the seismic rehabilitation of buildings, Washington, DC, USA

  • Gray MG, Christopoulos C, Packer JA (2014) Cast steel yielding brace system for concentrically braced frames: concept development and experimental validations. Struct Eng 140(4):931–949

    Article  Google Scholar 

  • Hurtado F, Bozzo LM (2008) Numerical and experimental analysis of a shear-link energy dissipator for seismic protection of buildings. In: The 14th world conference on earthquake engineering

  • Iervolino I, Galasso C, Cosenza E (2010) REXEL: computer aided record selection for code–based seismic structural analysis. Bull Earthq Eng 8(2):339–362

    Article  Google Scholar 

  • Jacobsen LS (1930) Steady forced vibrations as influenced by damping. ASME Trans 52(1):169–181

    Google Scholar 

  • Kim J, Choi H (2004) Behavior and design of structures with buckling-restrained braces. Eng Struct 26:693–706

    Article  Google Scholar 

  • Losanno D, Serino G (2017) Parametric non-linear analysis of reinforced concrete frames with supplemental damping systems. Int J Civ Environ Struct Constr Archit Eng 11(4):434–441

    Google Scholar 

  • Losanno D, Spizzuoco M, Serino G (2015) An optimal design procedure for a simple frame equipped with elastic-deformable dissipative braces. Eng Struct 101:677–697. https://doi.org/10.1016/j.engstruct.2015.07.055

    Article  Google Scholar 

  • Losanno D, Londono JM, Zinno S, Serino G (2017a) Effective damping and frequencies of viscous damper braced structures considering the supports flexibility. Comput Struct. https://doi.org/10.1016/j.compstruc.2017.07.022

    Google Scholar 

  • Losanno D, Spizzuoco M, Serino G (2017b) Design and retrofit of multi-story frames with elastic-deformable viscous damping braces. J Earthq Eng. https://doi.org/10.1080/13632469.2017.1387193

    Google Scholar 

  • Mayes R, Wetzel N, Weaver B, Tam K, Parker W, Brown A, Pietra D (2013) Performance based design of buildings to assess damage and downtime and implement a rating system. Bull N Z Soc Earthq Eng 46(1):40–55

    Google Scholar 

  • Mazza F (2014) Displacement-based seismic design of hysteretic damped braces for retrofitting in-plan irergular r.c. framed structures. Soil Dyn Earthq Eng 66:231–240

    Article  Google Scholar 

  • Mazza F, Vulcano A (2015) Displacement-based design procedure of damped braces for the seismic retrofitting of r.c. framed buildings. Bull Earthq Eng 13:2121–2143

    Article  Google Scholar 

  • McKenna FT (1997) Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing. PhD dissertation University of California, Berkeley

  • NTC (2018) Technical regulations for the constructions. Italian Ministry of the Infrastructures (in Italian)

  • Nuzzo I (2018) Use of low-damage structural systems in loss-based earthquake engineering, PhD Dissertation, University of Naples Parthenope

  • Nuzzo I, Losanno D, Serino G, Bozzo Rotondo LM (2014) A Seismic-resistant Precast r. c. system equipped with shear link dissipators for residential buildings. In: Second international conference in advance civil, structural and environmental engineering, vol 2(1), pp 249–254

  • Nuzzo I, Losanno D, Serino G, Bozzo Rotondo LM (2015) Simplified nonlinear analysis: application to damper-braced structures. In: Proceedings of the 15th international conference on civil, structural and environmental engineering computing, Civil-Comp Press, Stirlingshire, UK, paper 113, https://doi.org/10.4203/ccp.108.123

  • Nuzzo I, Losanno D, Caterino N, Serino G, Bozzo LM (2017) Experimental and analytical characterization of steel shear links for seismic energy dissipation. Eng Struct 172:405–418. https://doi.org/10.1016/j.engstruct.2018.06.005

    Article  Google Scholar 

  • Nuzzo I, Losanno D, Cilento F, Caterino N (2018) Steel shear links for passive control of earthquake-induced vibrations: analytical and numerical models based on experimental tests. J Constr Steel Res (submitted)

  • Pampanin S (2012) Reality-check and renewed challenges in earthquake engineering: implementing low-damage systems—from theory to practice. Bull N Z Soc Earthq Eng 45(4):137–160

    Google Scholar 

  • Ponzo FC, Dolce M, Vigoriti G, Arleo G, Di Cesare A (2009) Progettazione di controventi dissipativi a comportamento dipendente dagli spostamenti. In: Proceedings of XIII conference ANIDIS “L’ Ingegneria Sismica in Italia”, Bologna, Italy

  • Popov EP, Engelhardt MD (1988) Seismic eccentrically braced frames. J Constr Steel Res. https://doi.org/10.1016/0143-974X(88)90034-X

    Google Scholar 

  • Smerzini C, Galasso C, Iervolino I, Paolucci R (2014) Ground motion record selection based on broadband spectral compatibility. Earthq Spectra 30(4):1427–1448

    Article  Google Scholar 

  • Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley, Chichester

    Google Scholar 

  • Soong TT, Spencer BF Jr (2002) Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Eng Struct 24(3):243–259

    Article  Google Scholar 

Download references

Acknowledgements

The research activity has been supported by the University of Naples ‘‘Parthenope” with a grant within the call ‘‘Support for Individual Research for the 2015–17 Period” issued by Rectoral Decree no. 793/2017 and in the framework of the ReLUIS research project funded by the Italian Department for Civil Protection. The above supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iolanda Nuzzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Eq. (8)

Making reference to Fig. 24, the following equalities apply:

$${\text{V}}_{\text{PP,BF}}^{ *} = {\text{K}}_{\text{BF}}^{ *} \cdot {\text{d}}_{\text{y}}^{ *} + {\text{K}}_{\text{BF,py}}^{ *} \left( {{\text{d}}_{\text{pp}}^{ *} - {\text{d}}_{\text{y}}^{ *} } \right) = \left( {{\text{K}}_{\text{F}}^{ *} + {\text{K}}_{\text{DB}}^{ *} } \right) \cdot {\text{d}}_{\text{y}}^{ *} + \left( {{\text{K}}_{\text{F}}^{ *} + {\text{r}}_{\text{DB}}^{ *} {\text{K}}_{\text{DB}}^{ *} } \right)\left( {{\text{d}}_{\text{pp}}^{ *} - {\text{d}}_{\text{y}}^{ *} } \right) = {\text{K}}_{\text{F}}^{ *} \left( { 1+\upalpha} \right) \cdot {\text{d}}_{\text{y}}^{ *} + {\text{K}}_{\text{F}}^{ *} \left( { 1+ {\text{r}}_{\text{DB}}^{ *}\upalpha} \right)\left( {{\text{d}}_{\text{pp}}^{ *} - {\text{d}}_{\text{y}}^{ *} } \right) = {\text{K}}_{\text{F}}^{ *} \cdot \left\{ {{\text{d}}_{\text{pp}}^{ *} +\upalpha \cdot \left[ {{\text{d}}_{\text{y}}^{ *} + {\text{r}}_{\text{DB}}^{ *} \left( {{\text{d}}_{\text{pp}}^{ *} - {\text{d}}_{\text{y}}^{ *} } \right)} \right]} \right\}$$

that leads to the following result, that is that of Eq. (8):

Fig. 24
figure 24

Force-displacement behavior of BF system in the case of linear behavior of F

$$\upalpha = \left( {\frac{{{\text{V}}_{\text{PP,BF}}^{ *} }}{{{\text{K}}_{\text{F}}^{ *} }} - {\text{d}}_{\text{pp}}^{ *} } \right) \cdot \frac{ 1}{{{\text{d}}_{\text{y}}^{ *} + {\text{r}}_{\text{DB}}^{ *} \cdot \left( {{\text{d}}_{\text{pp}}^{ *} - {\text{d}}_{\text{y}}^{ *} } \right)}}\quad q.e.d.$$

Appendix B: Proof of Eq. (9)

Making reference to Fig. 25, the following equalities apply:

$${\text{V}}_{\text{PP,BF}}^{ *} = {\text{K}}_{\text{BF}}^{ *} \cdot {\text{d}}_{\text{y,DB}}^{ *} + {\text{K}}_{\text{BF,py,1}}^{ *} \left( {{\text{d}}_{\text{y,F}}^{ *} - {\text{d}}_{\text{y,DB}}^{ *} } \right) \quad + {\text{K}}_{\text{BF,py,2}}^{ *} \left( {{\text{d}}_{\text{PP}}^{ *} - {\text{d}}_{\text{y,F}}^{ *} } \right) = \left( {{\text{K}}_{\text{F}}^{ *} + {\text{K}}_{\text{DB}}^{ *} } \right) \cdot {\text{d}}_{\text{y,DB}}^{ *}\quad + \left( {{\text{K}}_{\text{F}}^{ *} + {\text{r}}_{\text{DB}}^{ *} {\text{K}}_{\text{DB}}^{ *} } \right)\left( {{\text{d}}_{\text{y,F}}^{ *} - {\text{d}}_{\text{y,DB}}^{ *} } \right) + \left( {{\text{r}}_{\text{F}}^{ *} {\text{K}}_{\text{F}}^{ *} + {\text{r}}_{\text{DB}}^{ *} {\text{K}}_{\text{DB}}^{ *} } \right)\left( {{\text{d}}_{\text{PP}}^{ *} - {\text{d}}_{\text{y,F}}^{ *} } \right) = {\text{K}}_{\text{F}}^{ *} \left( { 1+\upalpha} \right) \cdot {\text{d}}_{\text{y,DB}}^{ *} + {\text{K}}_{\text{F}}^{ *} \left( { 1+ {\text{r}}_{\text{DB}}^{ *}\upalpha} \right)\left( {{\text{d}}_{\text{y,F}}^{ *} - {\text{d}}_{\text{y,DB}}^{ *} } \right) + {\text{K}}_{\text{F}}^{ *} \left( {{\text{r}}_{\text{F}}^{ *} + {\text{r}}_{\text{DB}}^{ *}\upalpha} \right)\left( {{\text{d}}_{\text{PP}}^{ *} - {\text{d}}_{\text{y,F}}^{ *} } \right)$$

that leads to the following result, that is that of Eq. (9):.

Fig. 25
figure 25

Force-displacement behavior of BF system in the case of non-linear beavior of F

$$\upalpha = \left\{ {\frac{{{\text{V}}_{\text{PP,BF}}^{ *} }}{{{\text{K}}_{\text{F}}^{ *} }} - \left[ {{\text{d}}_{\text{y,F}}^{ *} + {\text{r}}_{\text{F}}^{ *} \left( {{\text{d}}_{\text{PP}}^{ *} - {\text{d}}_{\text{y,F}}^{ *} } \right)} \right]} \right\} \cdot \frac{ 1}{{{\text{d}}_{\text{y,DB}}^{ *} + {\text{r}}_{\text{DB}}^{ *} \cdot \left( {{\text{d}}_{\text{pp}}^{ *} - {\text{d}}_{\text{y,DB}}^{ *} } \right)}}\quad q.e.d.$$

Appendix C: Proof of Eq. (18)

The rheological model of the equivalent DB system can be modeled as springs in series. In Fig. 26 “n” is the total number of storeys, “i” the generic level. The base shear of the equivalent DB system, \({\text{V}}_{{{\text{PP}},{\text{DB}}}}^{*}\), corresponds to the first story shear of the dissipative brace system. Taking this into consideration and making reference to Fig. 27 the following equalities apply:

Fig. 26
figure 26

Rheological model of DB equivalent system

Fig. 27
figure 27

Force-displacement behavior of DB system

$${\text{r}}_{\text{DB}}^{ *} = \frac{{{\text{K}}_{\text{DB,py}}^{ *} }}{{{\text{K}}_{\text{DB}}^{ *} }} = \frac{{{\text{V}}_{\text{PP,DB}}^{ *} - {\text{V}}_{\text{y,DB}}^{ *} }}{{{\text{d}}_{\text{PP}}^{ *} - {\text{d}}_{\text{y}}^{ *} }} \cdot \frac{ 1}{{{\text{K}}_{\text{DB}}^{ *} }} = \frac{{{\text{V}}_{\text{PP,DB}} - {\text{V}}_{\text{y,DB}} }}{{{\text{d}}_{\text{PP}} - {\text{d}}_{\text{y}} }} \cdot \frac{ 1}{{{\text{K}}_{\text{DB}}^{ *} }} = \frac{{{\text{V}}_{{{\text{PP,DB,i}} = 1}} - {\text{V}}_{{{\text{y,DB,i}} = 1}} }}{{{\text{d}}_{\text{PP}} - {\text{d}}_{\text{y}} }} \cdot \frac{ 1}{{{\text{K}}_{\text{DB}}^{ *} }} = \frac{{{\text{V}}_{{{\text{y,DB,i}} = 1}} + \left( {\updelta_{{{\text{PP,i}} = 1}} -\updelta_{{{\text{y,i}} = 1}} } \right) \cdot {\text{K}}_{{{\text{DB,py,i}} = 1}} - {\text{V}}_{{{\text{y,DB,i}} = 1}} }}{{{\text{d}}_{\text{PP}} - {\text{d}}_{\text{y}} }} \cdot \frac{ 1}{{{\text{K}}_{\text{DB}}^{ *} }} = \frac{{\left( {\updelta_{{{\text{PP,i}} = 1}} -\updelta_{{{\text{y,i}} = 1}} } \right) \cdot {\text{K}}_{{{\text{DB,py,i}} = 1}} }}{{{\text{d}}_{\text{PP}} - {\text{d}}_{\text{y}} }} \cdot \frac{ 1}{{{\text{K}}_{\text{DB}}^{ *} }}\quad q.e.d.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuzzo, I., Losanno, D. & Caterino, N. Seismic design and retrofit of frame structures with hysteretic dampers: a simplified displacement-based procedure. Bull Earthquake Eng 17, 2787–2819 (2019). https://doi.org/10.1007/s10518-019-00558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-019-00558-8

Keywords

Navigation