Skip to main content
Log in

The Effects of Repeated Administration of the Micellar Complex of Methylprednisolone on the Locomotor Activity of a Terrestrial Snails

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effects of repeated injections of methylprednisolone and its micellar complex with block-copolymer on locomotor activity of a terrestrial snail. It was shown that methylprednisolone solution injected into the hemolymph of the animal produced a direct effect on the muscle system of the animal as soon as 1 h after administration: it slowed down snail locomotion and reduced contractile activity of the foot muscles. The micellar complex of methylprednisolone with block-copolymer prevented this effect during the first 2 days of injection and negatively affected locomotion only in 2 days after injection, the decrease in locomotion in this case was not accompanied by a decrease in contractile activity of the foot muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkhipova SS, Gainutdinova TKh, Ismailova AI, Gainutdinov KhL. Comparative studies of the effects of chlorpromazine and 5,6-dihydroxytryptamine on locomotion, defensive reactions in the snail Helix lucorum, and command neuron excitability in long-term sensitization. Neurosci. Behav. Physiol. 2006;36(7):759-766.

    Article  CAS  Google Scholar 

  2. Chen XG, Hua F, Wang SG, Tang HH. Albumin-Conjugated Lipid-Based Multilayered Nanoemulsion Improves Drug Specificity and Anti-Inflammatory Potential at the Spinal Cord Injury gSite after Intravenous Administration. AAPS PharmSciTech. 2018;19(2):590-598. https://doi.org/10.1208/s12249-017-0867-1

    Article  CAS  PubMed  Google Scholar 

  3. Fehlings MG, Noonan VK, Atkins D, Burns AS, Cheng CL, Singh A, Dvorak MF. Optimizing Clinical Decision Making in Acute Traumatic Spinal Cord Injury. J. Neurotrauma. 2017;34(20):2841-2842. https://doi.org/10.1089/neu.2016.4926

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fong PP, Ford AT. The biological effects of antidepressants on the molluscs and crustaceans: a review. Aquat. Toxicol. 2014;151:4-13. https://doi.org/10.1016/j.aquatox.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  5. Hall ED, Springer JE. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx. 2004;1(1):80-100.

    Article  Google Scholar 

  6. Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J. Control Release. 2015;219:141-154. https://doi.org/10.1016/j.jconrel.2015.08.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamalov MI, Đặng T, Petrova NV, Laikov AV, Luong D, Akhmadishina RA, Lukashkin AN, Abdullin TI. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy. Colloids Surf. B Biointerfaces. 2018;164:78-88. https://doi.org/10.1016/j.colsurfb.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  8. Kameyama T, Ohuchi K, Funato M, Ando S, Inagaki S, Sato A, Seki J, Kawase C, Tsuruma K, Nishino I, Nakamura S, Shimazawa M, Saito T, Takeda S, Kaneko H, Hara H. Efficacy of Prednisolone in Generated Myotubes Derived From Fibroblasts of Duchenne Muscular Dystrophy Patients. Front Pharmacol. 2018;9:1402. https://doi.org/10.3389/fphar.2018.01402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlova GA. Effects of serotonin, dopamine and ergometrine on locomotion in the pulmonate mollusc Helix lucorum. J. Exp. Biol. 2001;204(Pt 9):1625-1633.

    CAS  PubMed  Google Scholar 

  10. Pavlova GA. The similarity of crawling mechanisms in aquatic and terrestrial gastropods. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2019;205(1):1-11. https://doi.org/10.1007/s00359-018-1294-9

    Article  Google Scholar 

  11. Tamma R, Annese T, Capogrosso RF, Cozzoli A, Benagiano V, Sblendorio V, Ruggieri S, Crivellato E, Specchia G, Ribatti D, De Luca A, Nico B. Effects of prednisolone on the dystrophinassociated proteins in the blood-brain barrier and skeletal muscle of dystrophic mdx mice. Lab. Invest. 2013;93(5):592-610. https://doi.org/10.1038/labinvest.2013.46

    Article  CAS  PubMed  Google Scholar 

  12. Tsyganov VV, Sakharov DA. Locomotor rhythms in the pond snail Lymnaea stagnalis: site of origin and neurotransmitter requirements. Acta Biol. Hung. 2000;51(2-4):189-195.

    Article  CAS  Google Scholar 

  13. Vandebrouck C, Imbert N, Duport G, Cognard C, Raymond G. The effect of methylprednisolone on intracellular calcium of normal and dystrophic human skeletal muscle cells. Neurosci. Lett. 1999;269(2):110-114.

    Article  CAS  Google Scholar 

  14. Zvezdochkina NV, Muranova LN, Andrianov VV, Arkhipova SS, Gainutdinov KhL, Golubev AI, Pleshchinskii IN. Locomotor responses and neuron excitability in conditions of haloperidol blockade of dopamine in invertebrates and vertebrates. Neurosci. Behav. Physiol. 2006;36(1):21-27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. L. Gainutdinov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 7, pp. 9-14, July, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’eva, D.I., Deryabina, I.B., Baltin, M.E. et al. The Effects of Repeated Administration of the Micellar Complex of Methylprednisolone on the Locomotor Activity of a Terrestrial Snails. Bull Exp Biol Med 170, 5–9 (2020). https://doi.org/10.1007/s10517-020-04993-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04993-5

Key Words

Navigation