Skip to main content

Advertisement

Log in

Morphological Analysis of Biocompatibility of Autologous Bone Marrow Mononuclear Cells with Synthetic Polyethylene Terephthalate Scaffold

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the properties of a tissue-engineered trachea consisting of a polyethylene terephthalate scaffold populated with autologous bone marrow mononuclear cells. The tissue-engineered constructs were obtained before surgery, during the postoperative period, and during autopsy. Cytomorphological analysis during the postoperative period showed the presence of mesenchymal stem cells on the inner surface of the implant on day 3 after surgery and cells of the respiratory epithelium on day 10-14. In autopsy samples, single epithelial cells, endothelial cells, and basal cells were found. Biocompatibility of the tissue-engineered trachea with autologous mononuclear cells of the patient was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilevich IV, Fedorenko TV, Pashkova IA, Porkhanov VA, Chekhonin VP. Effects of growth factors on mobilization of mesenchymal stem cells. Bull. Exp. Biol. Med. 2017;162(5):684-686.

    Article  CAS  PubMed  Google Scholar 

  2. Shishatskaya EI, Nikolaeva ED, Shumilova AA, Shabanov AV, Volova TG. Cultivation of multipotent mesenchymal bone marrow cells on matrixes made of resorbable Bioplastotan. Geny Kletki. 2013;8(1):57-65. Russian.

    Google Scholar 

  3. Crowley C, Birchall M, Seifalian A.M. Trachea transplantation: from laboratory to patient. Tissue Eng. Regen. Med. 2015;9(4):357-367.

    Article  Google Scholar 

  4. Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;34:130-139.

    Article  CAS  PubMed  Google Scholar 

  5. Doss AE, Dunn SS, Kucera KA, Clemson LA, Zwischenberger J. B. Tracheal replacements: part 2. ASAIO J. 2007;53(5):631-639.

    Article  PubMed  Google Scholar 

  6. Hertegard S. Tissue engineering in the larynx and airway. Curr. Opin. Otolaryngol. Head Neck Surg. 2016;24(6):469-476.

    Article  PubMed  Google Scholar 

  7. Jungebluth P, Haag JC, Lim ML, Lemon G, Sjöqvist S, Gustafsson Y, Ajalloueian F, Gilevich I, Simonson OE, Grinnemo KH, Corbascio M, Baiguera S, Del Gaudio C, Strömblad S, Macchiarini P. Verification of cell viability in bioengineered tissues and organs before clinical transplantation. Biomaterials. 2013;34(16):4057-4067.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, Sun Y, Joo LS, Dagher R, Zielonka EM, Wang de Y, Lim B, Chow VT, Crum CP, Xian W, McKeon F. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147(3):525-538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Musa M, Ponnuraj KT, Mohamad D, Rahman IA. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test. Nanotechnology. 2013;24(1):ID 015105. 10.1088/0957-4484/24/1/015105.

  10. O’Brien FJ. Biomaterials and scaffolds for tissue engineering. Materials Today. 2011;14(3):88-95.

    Article  Google Scholar 

  11. Sheikh FA, Ju HW, Moon BM, Lee OJ, Kim JH, Park HJ, Kim DW, Kim DK, Jang JE, Khang G, Park CH. Hybrid scaffolds based on PLGA and silk for bone tissue engineering. J. Tissue Eng. Regen. Med. 2016;10(3):209-221.

    Article  CAS  PubMed  Google Scholar 

  12. Wormald JC, Fishman JM, Juniat S, Tolley N, Birchall MA. Regenerative medicine in otorhinolaryngology. J. Laryngol. Otol. 2015;129(8):732-739.

    Article  CAS  PubMed  Google Scholar 

  13. Wu W, Feng X, Mao T, Feng X, Ouyang HW, Zhao G, Chen F. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Br. J. Oral Maxillofac. 2007;45(4):272-278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gilevich.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 163, No. 3, pp. 388-392, March, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilevich, I.V., Polyakov, I.S., Porkhanov, V.A. et al. Morphological Analysis of Biocompatibility of Autologous Bone Marrow Mononuclear Cells with Synthetic Polyethylene Terephthalate Scaffold. Bull Exp Biol Med 163, 400–404 (2017). https://doi.org/10.1007/s10517-017-3813-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3813-z

Key Words

Navigation