Skip to main content
Log in

Inotropic Effects of Gaseous Transmitters in Isolated Rat Heart Preparation

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effects of carbon monoxide and sodium hydrosulfide, hydrogen sulfide donor, on contractile activity of the left ventricle in Langendorf-perfused isolated rat heart. Carbon monoxide 5×10−5 M significantly accelerated sinus rhythm and left-ventricular pressure wave growth and decay. To the contrary, negative inotropic and chronotropic effects were observed at higher concentrations of carbon monoxide (10−4, 3×10−4 M). Sodium hydrosulfide (10−4-4×10−4 M) decreased all the parameters of left-ventricular contractive activity and reduced contraction rate. Carbon monoxide and hydrogen sulfide, which together with nitrogen oxide are qualified as a new class of gaseous signal compounds, may substantially modulate pumping function of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Sitdikova and A. L. Zefirova, Priroda, No. 9, 29-37 (2010).

  2. G. F. Sitdikova and A. L. Zefirova, Ros. Fiziol. Zh., 97, No. 7, 872-882 (2006).

    Google Scholar 

  3. D. V. Abramochkin, L. S. Moiseenko, and V. S. Kuzmin, Bull. Exp. Biol. Med., 147, No. 6, 683-686 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. C. Cobb, K. D. Ward, W. Maziak, et al., Am. J. Health Behav., 34, No. 3, 275-285 (2010).

    Article  PubMed  Google Scholar 

  5. G. Kojda and K. Kottenberg, Cardiovasc. Res., 41, No. 3, 514-523 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. L. Li, A. Hsu, and P. K. Moore, Pharmacol. Ther., 123, No. 3, 386-400 (2009).

    Article  PubMed  CAS  Google Scholar 

  7. H. Liu, D. Song, and S. S. Lee, Am. J. Physiol. Gastrointest. Liver Physiol., 280, No. 1, G68-G74 (2001).

    PubMed  CAS  Google Scholar 

  8. A. Lochner, E. Marais, S. Genade, and J. A. Moolman, Am. J. Physiol. Heart Circ. Physiol., 279, No. 6, 2752-2765 (2000).

    Google Scholar 

  9. M. D. Musameh, B. J. Fuller, B. E. Mann, et al., Br. J. Pharmacol., 149, No. 8, 1104-1112 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. T. T. Pan, Z. N. Feng, S. W. Lee, et al., J. Mol. Cell. Cardiol., 40, No. 1, 119-130 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. J. Tamargo, R. Caballero, R. Gomez, and E. Delpon, Cardiovasc. Res., 87, No. 4, 593-600 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. K. Uemura, S. Adachi-Akahane, K. Shintani-Ishida, and K. Yoshida, Biochem. Biophys. Res. Commun., 334, No. 2, 661-668 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. L. Wu and R. Wang, Pharmacol. Rev., 57, No. 8, 585-630 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. F. Zufall and T. Leinders-Zufall, J. Neurosci., 17, No. 8, 2703-2712 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Abramochkin.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 153, No. 6, pp. 833-836, June, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porokhya, M.V., Abramochkin, D.V., Abramov, A.A. et al. Inotropic Effects of Gaseous Transmitters in Isolated Rat Heart Preparation. Bull Exp Biol Med 153, 856–858 (2012). https://doi.org/10.1007/s10517-012-1843-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-012-1843-0

Key Words

Navigation