Skip to main content

Advertisement

Log in

Changes in Activity of Proline-Specific Peptidases in Rat Model for Dementia of Alzheimer’s Type

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the role of proline-specifi c peptidases in the pathogenesis of Alzheimer’s disease. Testing of conditioned passive avoidance 24 h after learning showed that chronic administration of scopolamine to rats 4-fold reduced the latency of entry into the dark chamber in comparison with controls (intact animals). Activity of prolyl endopeptidase was signifi cantly higher than in the controls in both the cortex and hippocampus. Changes in dipeptidyl peptidase IV activity were observed only in the cortex. Injection of AF-64A toxin into Meynert nucleus basalis reduced the latency of entry into the dark compartment by 75% in comparison with that in sham-operated and intact controls. Prolyl endopeptidase activity was reduced in the frontal cortex and hippocampus, but not in hypothalamus. Changes in dipeptidyl peptidase IV activity were detected only in the frontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. P. Ashmarin and S. V. Koroleva, Advanced Functional Neurochemistry, Eds. S. A. Dambinova and A. V. Arutjunian [in Russian], St. Petersburg (2003), pp. 85-94.

  2. N. N. Zolotov, O. A. Kutepova, T. A. Voronina, et al., Dokl. Akad. Nauk SSSR, 317, 234-237 (1991).

    PubMed  CAS  Google Scholar 

  3. A. Aguilar-Valles, E. Sánchez, P. de Gortari, et al., Neurochem. Int., 50, No. 2, 404-417 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. S. L. Bernstein, N. F. Dupuis, N. D. Lazo, et al., Nat. Chem., 1, No. 4, 326-331 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. L. Bertram, Int. Rev. Neurobiol., 84, 167-184 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. M. M. Bradford, Anal. Biochem., 72, 248-254 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. A. Fisher and I. Hanin, Ann. Rev. Pharmacol. Toxicol., 26, 161-181 (1986).

    Article  CAS  Google Scholar 

  8. F. Fonnum, J. Neurochem., 24, No. 2, 407-409 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. A. J. Jalkanen, J. J. Hakkarainen, M. Lehtonen, et al., Basic. Clin. Pharmacol. Toxicol., 109, No. 6, 443-451 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. P. T. Mannisto, P. Tuomainen, O. Kutepova, et al., Pharmacol. Biochem. Behav., 49, No. 1, 33-40 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. R. Mentlein, Regul. Pept., 85, No. 1, 9-24 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. L. Osherovich, Science Business Exchange, No. 1, 1-2 (2011).

  13. Y. S. Park, H. J. Jang, K. H. Lee, et al., J. Agric. Food Chem., 54, No. 4, 1238-1242 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. S. Rossner, I. Schulz, U. Zeitschel, et al., Neurochem. Res., 30, Nos. 6-7, 695-702 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nazarova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 153, No. 5, pp. 628-630, May, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarova, G.A., Kolyasnikova, K.N. & Zolotov, N.N. Changes in Activity of Proline-Specific Peptidases in Rat Model for Dementia of Alzheimer’s Type. Bull Exp Biol Med 153, 674–676 (2012). https://doi.org/10.1007/s10517-012-1796-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-012-1796-3

Keywords

Navigation