Skip to main content
Log in

Changes in Phospholipid Composition of Cardiomyocyte Plasma Membranes during Hemorrhagic Shock

  • General Pathology and Pathophysiology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Changes in the phospholipid composition of cardiomyocyte plasma membranes during hemorrhagic shock suggest that disturbances in phosphatidylethanolamine metabolism serve as one of the major factors for myocardial alteration in shock. Depletion of membrane phosphatidylcholine causes destruction of cardiomyocytes. The enhanced breakdown of membrane sphingomyelin at the late stage of hemorrhagic shock is considered as a mechanism, which induces apoptosis in cardiomyocytes and Ca2+ accumulation in these cells. A simultaneous increase in the content of membrane phosphatidylserine is the mechanism of activation of opioid receptors, which plays a compensatory role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. S. Belokoneva and S. V. Zaitsev, Biokhimiya, 58, No. 1, 1685–1708 (1993).

    CAS  Google Scholar 

  2. A. A. Vartanyan, G. V. Aprikyan, and B. F. Vanyushin, Izv. Akad. Nauk SSSR. Ser. Biol., No. 5, 786–789 (1990).

  3. A. A. Dizhe, A. I. Levshankov, I. E. Krasovskaya, et al., Anest. Reanim., No. 4, 40–43 (2001).

    Google Scholar 

  4. V. T. Dolgikh, Damage and Protection of the Heart during Acute Fatal Blood Loss [in Russian], Omsk (2002).

  5. L. N. Maslov, Yu. B. Lishmanov, G. D. Gross, et al., Vestn. Aritmol., No. 28, 67–78 (2002).

  6. V. S. Orlov, Mechanisms of Vesicular Transport [in Russian], Moscow (1995).

  7. V. E. Benediktsdóttir, J. Curvers, and S. Gudbjarnason, J. Mol. Cell. Cardiol., 31, No. 5, 1105–1115 (1999).

    Article  PubMed  Google Scholar 

  8. Y. A. Hannun, C. Luberto, and K. M. Argraves, Biochemistry, 40, No. 16, 4893–4903 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. A. M. Kidwai, M. A. Radcliffe, G. Duchon, and E. E. Daniel, Biochem. Biophys. Res. Commun., 45, No. 4, 901–910 (1971).

    Article  PubMed  CAS  Google Scholar 

  10. S. Persad and V. Panagia, J. Mol. Cell. Cardiol., 27, No. 1, 579–587 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Sang, D. Cui, and X. Wang, Plant Physiol., 126, No. 4, 1449–1458 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. S. Seraskeris, C. Gaitanaki, and A. Lazou, Arch. Biochem. Biophys., 392, No. 1, 117–122 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. M. Soliman and A. M. Al-Drees, Pak. J. Med. Sci., 25, 289–292 (2009).

    Google Scholar 

  14. K. Törnquist, T. Blom, R. Shariatmadari, and M. Pasternack, Biochem. J., 380, Pt. 3, 661–668 (2004).

    Article  PubMed  Google Scholar 

  15. C. R. Winter and R. C. Baker, Life Sci., 57, No. 21, 1925–1934 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Leskova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 151, No. 3, pp. 255-258, March, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leskova, G.F., Kryzhanovsky, G.N. Changes in Phospholipid Composition of Cardiomyocyte Plasma Membranes during Hemorrhagic Shock. Bull Exp Biol Med 151, 284–287 (2011). https://doi.org/10.1007/s10517-011-1310-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-011-1310-3

Key Words

Navigation