Skip to main content
Log in

Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Biocompatibility of porous granulated bioceramic materials (hydroxyapatite, β-tricalcium phosphate, hydroxyapatite-β-tricalcium phosphate complex (80:20 wt%), carbonate-containing hydroxyapatite, and silicon-containing hydroxyapatite) was shown in a subcutaneous test on BDF1 mice. Dynamic (up to 8 months) observation showed gradual replacement of the granular substance with de novo forming bone tissue with hemopoiesis foci on a model of fenestral defect in the shin bone in Wistar rats. By the rate of resorption, the materials rank as follows: silicon-containing hydroxyapatite<hydroxyapatite<hydroxyapatite-β-tricalcium phosphate<β-tricalcium phosphate<carbonate-containing hydroxyapatite. The rate of resorption in bone tissue defect was significantly higher than in the subcutaneous test, but lagged behind (even for tricalcium phosphate and carbonate-containing hydroxyapatite) bone tissue formation de novo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Barinov and V. S. Komlev, Calcium Phosphate-Based Bioceramics [in Russian], Moscow (2005).

  2. G. N. Berchenko and S. M. Lipkin, Microscopic Techniques [in Russian], Ed. D. S. Sarkisov and Yu. L. Perov, Moscow (1996), pp. 446–499.

  3. A. G. Veresov, V. I. Putlyaev, and Yu. D. Tretyakov, Ros. Khim. Zh., 44, No. 6, 32–46 (2000).

    CAS  Google Scholar 

  4. O. L. Kubarev, V. S. Komlev, S. M. Barinov, et al., Dokl. Akad. Nauk, 409, No. 1, 73–76 (2006).

    Google Scholar 

  5. V. P. Orlovskii, V. S. Komlev, and S. M. Barinov, Neorg. Mater., 38, No. 10, 973–984 (2002).

    Article  CAS  Google Scholar 

  6. V. I. Putlyaev, Soros. Obrazovat. Zh., 8, No. 1, 44–50 (2004).

    Google Scholar 

  7. G. Daculsi, Biomaterials, 19, 1473–1478 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. G. Daculsi, O. Laboux, O. Malard, and P. Weiss, J. Mater. Sci. Mater. Med., 14, No. 3, 195–200 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, J. Eur. Ceramic Soc., 23, 2931–2937 (2003).

    Article  CAS  Google Scholar 

  10. T. Livingston Arinzeh, T. Tran, J. Mcalary, and G. Daculsi, Biomaterials, 26, 3631–3638 (2005).

    Article  PubMed  Google Scholar 

  11. A. Porter, N. Patel, R. Brooks, et al., J. Mater. Sci. Mater. Med., 16, 899–907 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. W. Suchanek and M. Joshimura, J. Mater. Res., 13, 94–117 (1998).

    Article  CAS  Google Scholar 

  13. A. Tampieri, G. Celotti, S. Sprio, et al., Biomaterials, 22, No. 11, 1365–1370 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. Vallet-Regi and J. M. Gonsales-Calbert, Progr. Solid State Chem., 32, 1–31 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Sergeeva.

Additional information

Translated from Kletochnye Tehnologii v Biologii i Medicine, No. 3, pp. 151–156, August, 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chissov, V.I., Sviridova, I.K., Sergeeva, N.S. et al. Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials. Bull Exp Biol Med 146, 139–143 (2008). https://doi.org/10.1007/s10517-008-0222-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-008-0222-3

Key Words

Navigation