Skip to main content

Advertisement

Log in

Real-time path planning for long-term information gathering with an aerial glider

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013a). Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. Journal of Intelligent and Robotic Systems, 70(1–4), 329–345.

    Article  Google Scholar 

  • Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013b). Distributed approach for coverage and patrolling missions with a team of heterogeneous aerial robots under communication constraints. International Journal of Advanced Robotic Systems, 10(28), 13–28.

    Google Scholar 

  • Acevedo, J.J., Lawrance, N.R.J., Arrue, B.C., Sukkarieh, S., & Ollero, A. (2014). Persistent monitoring with a team of autonomous gliders using static soaring. In Proceedings of IEEE/RSJ IROS (pp. 4842–4848).

  • Ákos, Z., Nagy, M., Leven, S., & Vicsek, T. (2010). Thermal soaring flight of birds and unmanned aerial vehicles. Bioinspiration and Biomimetics, 5(4), 045003.

    Article  Google Scholar 

  • Allen, M.J. (2005). Autonomous soaring for improved endurance of a small uninhabited air vehicle. In Proceedings of AIAA ASM.

  • Allen, M.J., & Lin, V. (2007). Guidance and control of an autonomous soaring UAV. Technical Memorandum NASA/TM-2007-214611. NASA Dryden Flight Research Center.

  • Andersson, K., Kaminer, I., Dobrokhodov, V., & Cichella, V. (2012). Thermal centering control for autonomous soaring: Stability analysis and flight test results. Journal of Guidance, Control, and Dynamics, 35(3), 963–975.

    Article  Google Scholar 

  • Applegate, D. L. (2006). The traveling salesman problem: A computational study. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Benkoski, S. J., Monticino, M. G., & Weisinger, J. R. (1991). A survey of the search theory literature. Naval Research Logistics, 38(4), 469–494.

    Article  MATH  Google Scholar 

  • Binney, J., Krause, A., & Sukhatme, G. S. (2013). Optimizing waypoints for monitoring spatiotemporal phenomena. The International Journal of Robotics Research, 32(8), 873–888.

    Article  Google Scholar 

  • Bishop, C. M. (2007). Pattern recognition and machine learning (information science and statistics). Berlin: Springer.

    Google Scholar 

  • Bourgault, F., Furukawa, T., & Durrant-Whyte, H.F. (2003). Coordinated decentralized search for a lost target in a bayesian world. In Proceedings of IEEE/RSJ IROS (pp. 48–53).

  • Bourgault, F., Furukawa, T., & Durrant-Whyte, H.F. (2006). Optimal search for a lost target in a bayesian world. In Proceedings of FSR (pp. 209–222). Berlin: Springer.

  • Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43.

    Article  Google Scholar 

  • Chakrabarty, A., & Langelaan, J.W. (2009). Energy maps for long-range path planning for small- and micro- UAVs. In Proceedings of AIAA GNC.

  • Chakrabarty, A., & Langelaan, J.W. (2010). Flight path planning for UAV atmospheric energy harvesting using heuristic search. In Proceedings of AIAA GNC.

  • Chakrabarty, A., & Langelaan, J. W. (2011). Energy-based long-range path planning for soaring-capable unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 34(4), 1002–1015.

    Article  Google Scholar 

  • Chekuri, C., & Pal, M. (2005). A recursive greedy algorithm for walks in directed graphs. In Proceedings of IEEE FOCS (pp. 245–253).

  • Chung, J.J., Trujillo, M.A., & Sukkarieh, S. (2012). A new utility function for smooth transition between exploration and exploitation of a wind energy field. In Proceedings of IEEE/RSJ IROS (pp. 4999–5005).

  • Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316.

    Article  Google Scholar 

  • Cobano, J.A., Alejo, D., Sukkarieh, S., Heredia, G., & Ollero, A. (2013a). Thermal detection and generation of collision-free trajectories for cooperative soaring uavs. In Proceedings of IEEE/RSJ IROS (pp. 2948–2954).

  • Cobano, J.A., Alejo, S. D., Vera, Heredia, G., & Ollero, A. (2013b). Multiple gliding UAV coordination for static soaring in real time applications. In Proceedings of IEEE ICRA (pp 790–795).

  • Cutler, M.J., McLain, T.M., Beard, R.W., & Capozzi, B. (2010). Energy harvesting and mission effectiveness for small unmanned aircraft. In Proceedings of AIAA GNC

  • Depenbusch, N.T., & Langelaan, J.W. (2010). Receding horizon control for atmospheric energy harvesting by small UAVs. In Proceedings of AIAA GNC

  • Depenbusch, N.T., & Langelaan, J.W. (2013). Coordinated mapping and exploration for autonomous soaring. In Proceedings of AIAA InfotechAerospace Conference

  • Dobbie, J. M. (1968). A survey of search theory. Operations Research, 16(3), 525–537.

    Article  MATH  Google Scholar 

  • Durrant-Whyte, H.F., Stevens, M., & Nettleton, E. (2001) Data fusion in decentralised sensing networks. In Proceedings of ICIF (pp. 302–307).

  • Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path, moving target search problem. Operations Research, 38(1), 110–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, D., & Silverberg, L. M. (2010). Autonomous soaring: The Montague cross-country challenge. Journal of Aircraft, 47(5), 1763–1769.

    Article  Google Scholar 

  • Gan, S.K., Yang, K., & Sukkarieh, S. (2009). 3d path planning for a rotary wing uav using a gaussian process occupancy map. In Proceedings of ARAA ACRA.

  • Gan, S. K., Fitch, R., & Sukkarieh, S. (2014). Online decentralized information gathering with spatial-temporal constraints. Autonomous Robots, 37(1), 1–25.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of np-completeness. New York: W. H. Freeman & Co.

    MATH  Google Scholar 

  • Jin, Y., Minai, A.A., & Polycarpou, M.M. (2003). Cooperative real-time search and task allocation in uav teams. In Proceedings of IEEE CDC (pp. 7–12).

  • Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. In Proceedings of ECML (pp. 282–293).

  • Korner, F., Speck, R., Goktogan, A.H., & Sukkarieh, S. (2010). Autonomous airborne wildlife tracking using radio signal strength. In Proceedings of IEEE/RSJ IROS (pp. 107–112).

  • Krause, A., & Golovin, D. (2012). Submodular function maximization. Tractability: Practical Approaches to Hard Problems, 3, 19.

    Google Scholar 

  • Kreucher, C.M., Morelande, M., Kastella, K., & Hero, A.O. (2005). Particle filtering for multitarget detection and tracking. In Proceedings of IEEE Aerospace Conference (pp. 2101–2116).

  • Kreucher, C. M., Hero, A. O., Kastella, K. D., & Morelande, M. R. (2007). An information-based approach to sensor management in large dynamic networks. Proceedings of the IEEE, 95(5), 978–999.

    Article  Google Scholar 

  • Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6(1), 4–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Langelaan, J. W. (2009). Gust energy extraction for mini and micro uninhabited aerial vehicles. Journal of Guidance, Control, and Dynamics, 32(2), 464–473.

    Article  Google Scholar 

  • Lavis, B., & Furukawa, T. (2009). Hype: hybrid particle-element approach for recursive bayesian searching-and-tracking. Proceedings of RSS (p. 135).

  • Lawrance, N.R.J. (2011). Autonomous soaring flight for unmanned aerial vehicles. PhD thesis, The University of Sydney.

  • Lawrance, N. R. J., & Sukkarieh, S. (2011a). Autonomous exploration of a wind field with a gliding aircraft. Journal of Guidance, Control, and Dynamics, 34(3), 719–733.

    Article  Google Scholar 

  • Lawrance, N.R.J., & Sukkarieh, S. (2011b) Path planning for autonomous soaring flight in dynamic wind fields. In Proceedings of IEEE ICRA (pp. 2499–2505).

  • Levine, D., Luders, B., & How, J.P. (2010). Information-rich path planning with general constraints using rapidly-exploring random trees. In Proceedings of AIAA Infotech Aerospace Conference.

  • Mathworks (2013). MATLAB and simulink for technical computing (R2013b).

  • Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2), 61.

    Google Scholar 

  • Nguyen, J.L., Lawrance, N.R.J., Fitch, R., & Sukkarieh, S. (2013). Energy-constrained motion planning for information gathering with autonomous aerial soaring. In Proceedings of IEEE ICRA (pp. 3825–3831).

  • Nguyen, J.L., Lawrance, N.R.J., & Sukkarieh, S. (2014). Nonmyopic planning for long-term information gathering with an aerial glider. In Proceedings of IEEE ICRA (pp. 6573–6578).

  • Rayleigh, L. (1883). The soaring of birds. Nature, 27(701), 534–535.

    Article  Google Scholar 

  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence—A modern approach. Upper Saddle River: Pearson Education.

    MATH  Google Scholar 

  • Sato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval Research Logistics, 57(5), 422–440.

    MathSciNet  MATH  Google Scholar 

  • Sirio, G. (2013). ChibiOS/RT.

  • Smith, O. J., Boland, N., & Waterer, H. (2012). Solving shortest path problems with a weight constraint and replenishment arcs. Computers and Operations Research, 39(5), 964–984.

    Article  MathSciNet  MATH  Google Scholar 

  • Stone, L. D. (1989). Theory of optimal search. Arlington, VA: Operations Research Society of America.

    Google Scholar 

  • Stone, L. D., Streit, R. L., Corwin, T. L., & Bell, K. L. (2013). Bayesian multiple target tracking. Norwood, MA: Artech House.

    MATH  Google Scholar 

  • Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. (2009). Decentralised coordination of mobile sensors using the max-sum algorithm. In Proceedings of IJCAI (pp. 299–304).

  • Trummel, K. E., & Weisinger, J. R. (1986). Technical note the complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Washburn, A. R. (1998). Branch and bound methods for a search problem. Naval Research Logistics, 45, 243–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, D. B., Goktogan, A. H., & Sukkarieh, S. (2012). UAV rendezvous: From concept to flight test. In Proceedings of ARAA ACRA.

  • Wilson, D. B., Goktogan, A. H., Sukkarieh, S. (2014). A vision based relative navigation framework for formation flight. In Proceedings of IEEE ICRA (pp. 4988–4995).

  • Wong, E.M., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle bayesian search for multiple lost targets. In Proceedings of IEEE ICRA (pp. 3169–3174).

  • Yang, Y., Polycarpou, M. M., & Minai, A. A. (2007). Multi-uav cooperative search using an opportunistic learning method. Journal of Dynamic Systems, Measurement, and Control, 129(5), 716–728.

    Article  Google Scholar 

  • Yu, J., Schwager, M., & Rus, D. (2014). Correlated orienteering problem and its application to informative path planning for persistent monitoring tasks. In Procedings of IEEE/RSJ IROS (pp. 342–349).

Download references

Acknowledgments

This work is supported in part by the Australian Centre for Field Robotics and the New South Wales state government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, J.L., Lawrance, N.R.J., Fitch, R. et al. Real-time path planning for long-term information gathering with an aerial glider. Auton Robot 40, 1017–1039 (2016). https://doi.org/10.1007/s10514-015-9515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9515-3

Keywords

Navigation