Skip to main content
Log in

A Bayesian nonparametric approach to modeling motion patterns

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The most difficult—and often most essential—aspect of many interception and tracking tasks is constructing motion models of the targets. Experts rarely can provide complete information about a target’s expected motion pattern, and fitting parameters for complex motion patterns can require large amounts of training data. Specifying how to parameterize complex motion patterns is in itself a difficult task.

In contrast, Bayesian nonparametric models of target motion are very flexible and generalize well with relatively little training data. We propose modeling target motion patterns as a mixture of Gaussian processes (GP) with a Dirichlet process (DP) prior over mixture weights. The GP provides an adaptive representation for each individual motion pattern, while the DP prior allows us to represent an unknown number of motion patterns. Both automatically adjust the complexity of the motion model based on the available data. Our approach outperforms several parametric models on a helicopter-based car-tracking task on data collected from the greater Boston area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashbrook, D., & Starner, T. (2003). Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 7(5), 275–286.

    Article  Google Scholar 

  • Bishop, C. M. (2006). Information science and statistics. Pattern recognition and machine learning. Berlin: Springer.

    MATH  Google Scholar 

  • Boyle, P., & Frean, M. (2005). Dependent Gaussian processes. In Advances in neural information processing systems (Vol. 17, pp. 217–224). Cambridge: MIT Press.

    Google Scholar 

  • Csató, L., & Opper, M. (2001). Sparse representation for Gaussian process models. In Advances in neural information processing systems (pp. 444–450). Cambridge: MIT Press.

    Google Scholar 

  • Deisenroth, M. P., Huber, M. F., & Hanebeck, U. D. (2009). Analytic moment-based Gaussian process filtering. In L. Bouttou & M. Littman (Eds.), Proceedings of the 26th international conference on machine learning, Montreal, Canada (pp. 225–232). Easbourne: Omnipress.

    Google Scholar 

  • Dia, H. (2002). An agent-based approach to modeling driver route choice behaviour under the influence of real-time information. The American Statistician, 10, 331–349.

    Google Scholar 

  • Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222.

    Article  Google Scholar 

  • Fox, E., Sudderth, E., & Willsky, A. S. (2007). Hierarchical Dirichlet processes for tracking maneuvering targets. In Proc. inter. conf. information fusion.

    Google Scholar 

  • Girard, A., Rasmussen, C. E., Quintero-Candela, J., & Murray-smith, R. (2003). Gaussian process priors with uncertain inputs—application to multiple-step ahead time series forecasting. In Advances in neural information processing systems (pp. 529–536). Cambridge: MIT Press.

    Google Scholar 

  • He, R., Bachrach, A., & Roy, N. (2010). Efficient planning under uncertainty for a target-tracking micro-air vehicle. In Proc. IEEE international conference on robotics and automation.

    Google Scholar 

  • Hsu, D., Lee, W. S., & Rong, N. (2008). A point-based POMDP planner for target tracking. In Proc. IEEE international conference on robotics and automation, Pasadena, CA.

    Google Scholar 

  • Joseph, J. M., Doshi-Velez, F., & Roy, N. (2010). A Bayesian nonparametric approach to modeling mobility patterns. In AAAI.

    Google Scholar 

  • Ko, J., & Fox, D. (2009). GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Autonomous Robots, 27(1), 75–90.

    Article  Google Scholar 

  • Kurniawati, H., Du, Y., Hsu, D., & Lee, W. (2009). Motion planning under uncertainty for robotic tasks with long time horizons. In Proc. international symposium of robotics research.

    Google Scholar 

  • Letchner, J., Krumm, J., & Horvitz, E. (2006). Trip router with individualized preferences (TRIP): incorporating personalization into route planning. In AAAI.

    Google Scholar 

  • Liao, L., Patterson, D. J., Fox, D., & Kautz, H. (2007). Learning and inferring transportation routines. Artificial Intelligence, 171(5–6), 311–331.

    Article  MathSciNet  MATH  Google Scholar 

  • Meeds, E., & Osindero, S. (2006). An alternative infinite mixture of Gaussian process experts. In NIPS 18.

    Google Scholar 

  • Meiring, W., Monestiez, P., Sampson, P., & Guttorp, P. (1997). Developments in the modelling of nonstationary spatial covariance structure from space-time monitoring data. In E. Baafi & N. Schofield (Eds.), Geostatistics wallongong 1996 (pp. 162–173). Dordrecht: Kluwer.

    Google Scholar 

  • Miller, S. A., Harris, Z. A., & Chong, E. K. P. (2009). A POMDP framework for coordinated guidance of autonomous UAVs for multitarget tracking. EURASIP Journal on Advances in Signal Processing. doi:10.1155/2009/724597.

    Google Scholar 

  • Paciorek, C. J., & Schervish, M. J. (2000). Nonstationary covariance functions for Gaussian process regression. In Neural information processing systems.

    Google Scholar 

  • Patterson, D., Liao, L., Fox, D., & Kautz, H. (2003). Inferring high-level behavior from low-level sensors. In Proc. UBICOMP.

    Google Scholar 

  • Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value iteration: An anytime algorithm for POMDPs. In International joint conference artificial intelligence (pp. 1025–1032).

    Google Scholar 

  • Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic programming. New York: Wiley.

    MATH  Google Scholar 

  • Raftery, A. (1986). Choosing models for cross-classifications. American Sociological Review, 51, 145–146.

    Article  Google Scholar 

  • Rasmussen, C. E. (2000). The infinite Gaussian mixture model. In NIPS (p. 12).

    Google Scholar 

  • Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts. In NIPS (p. 14).

    Google Scholar 

  • Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning Series. ISBN 0-262-18253-X.

  • Ross, S., Pineau, J., Paquet, S., & Chaib-Draa, B. (2008). Online planning algorithms for POMDPs. The Journal of Artificial Intelligence Research, 32, 663–704.

    MathSciNet  MATH  Google Scholar 

  • Roy, N., & Earnest, C. (2006). Dynamic action spaces for information gain maximization in search and exploration. doi:10.1109/ACC.2006.1656452.

  • Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems (Vol. 18, pp. 1257–1264). Cambridge: MIT Press.

    Google Scholar 

  • Tay, C., & Laugier, C. (2007). Modelling smooth paths using Gaussian processes. In International conference on field and service robotics.

    Google Scholar 

  • Teh, Y. W. (2010). Dirichlet processes. In Encyclopedia of machine learning. ISBN 978-0-387-30768-8.

  • Ziebart, B. D., Maas, A., Bagnell, J., & Dey, A. K. (2008). Maximum entropy inverse reinforcement learning. In AAAI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J., Doshi-Velez, F., Huang, A.S. et al. A Bayesian nonparametric approach to modeling motion patterns. Auton Robot 31, 383–400 (2011). https://doi.org/10.1007/s10514-011-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9248-x

Keywords

Navigation