Skip to main content
Log in

Conceptual Development of a 600–1000 MeV Proton Beam Accelerator-Driver with Average Beam Power >1 MW

  • Published:
Atomic Energy Aims and scope

The results of a comprehensive analysis of the possibility of developing in our country a powerful proton accelerator-driver as an element of subcritical electro-nuclear facility are presented. The investigations are performed taking account of the latest advances of accelerator technology and the real capabilities of industry. The design layout developed for the accelerator is discussed. It is shown that in principle a prototype of a ~1 GeV accelerator-driver with current 1–5 mA, which can subsequently be increased to 10–15 mA, can be built in Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Polozov and A. D. Fertman, “High-power proton accelerators for subcritical nuclear facilities plants,” At. Énerg., 113, No. 3, 155–162 (2012).

    Google Scholar 

  2. V. N. Mikhailov, “Powerful neutron beams with the use of accelerators,” Krat. Soobsh. OIYAI, Iss. 6, 17 (1996).

  3. B. P. Murin, G. I. Batskikh, V. M. Belugin, et al., “Superconducting devices use in high current linear proton accelerators for energy proposes,” in: Proc. 2nd Int. Conf. Accelerator-Driven Transmutation Technologies and Applications (1996), Vol. 2, p. 1047.

  4. V. A. Andreev, A. I. Balabin, I. V. Chuvilo, et al., “A new approach in high current ion linac design,” ibid., p. 1020.

  5. V. P. Dmitrievskii, “Electronuclear method of obtaining energy,” Fiz. At. Yadra Elem. Chast., 28, No. 3, 815–836 (1997).

    Google Scholar 

  6. F. Bouly, J.-L. Biarrotte, T. Junquera, et al., “Accelerator R&D for the European ADS demonstrator,” in: Proc. PAC’09 (2009), pp. 668–672.

  7. H. Abderrahim, “ADS projects in the world and perspective for implementation of MYRRHA/XT–ADS in Europe,” Abstr. Int. Topical Meeting on Nucl. Res. Applications and Utilization of Accelerators (2009), p. 3.

  8. L. Mansani, C. Artioli, M. Schikorr, et al., “The European lead-cooled EFIT plant: an industrial-scale acceleratordriven system for minor actinide transmutation,” Nucl. Technol., 180, No. 2, 241–263 (2012).

    Google Scholar 

  9. M. Marchetto, M. Comunian, A. Pisent, et al., “Study of a high-current 176 MHz RFQ as a deuteron injector for the SPES project,” in: Proc. EPAC’04 (2004), pp. 251–253.

  10. A. C. Mezger and M. Seidel, “Control and protection aspects of the megawatt proton accelerator at PSI,” in: Proc. HB’10 (2010), pp. 281–285.

  11. K. McDonald, R. Bennett, O. Caretta, et al., “The MERIT high power target experiment at the CERN PS,” in: Proc. PAC’09 (2009), pp. 795–799.

  12. M. Heilmann, H. Podlech, U. Ratzinger, et al., “FRANZ – accelerator test bench and neutron source,” in: Proc. LINAC’12 (2012), pp. 130–132.

  13. S. Steer, Report of ThorEA Roadmapping Activity, ThorEA Rep., July 2010.

  14. C. Prior, “Overview of high intensity accelerator projects,” in: Proc. HB’10 (2010), pp. 6–10.

  15. K. Kikuchi, S. Saito, K. Tsujimoto, et al., “Design optimization of ADS plant proposed by JAERI,” Nucl. Instrum. Meth. A, 562, No. 2, 646–649 (2006).

    Article  ADS  Google Scholar 

  16. J. Tang, S. Fu, and L. Ma, “High intensity aspects of the CSNS proton accelerators,” in: Proc. HB’10 (2010), pp. 38–42.

  17. W. Park, T. Song, B. Lee, and C. Park, “A preliminary design study for the HYPER system,” Nucl. Eng. Design, 219, No. 3, 207–223 (2003).

    Article  MathSciNet  Google Scholar 

  18. T. Basak, S. Rao, P. Singh, et al., “Beam dynamics for 1 GeV proton linac for ADS,” BARC Newsletter, No. 285, 140–152 (2007).

  19. S. Henderson, “DOE study report,” in: Int. Workshop on Accelerator-Driven Sub-Critical Systems & Th Utilization (2010), pp. 1–72.

  20. A Roadmap for Developing Accelerator Transmutation of Waste (ATW) Technology, Rep. to Congress, US Department of Energy, October, 1999.

  21. R. Sheffield, “Utilization of accelerators for transmutation and energy production,” in: Proc. HB’10 (2010), pp. 1–5.

  22. R. Sheffield and E. Pitcher, “Application of accelerators in nuclear waste management,” ICFA Beam Dynamics Newsletter, No. 49, 16–38 (2009).

  23. L. Rybarcyk, “Recent operational experience at the LANSCE facility,” in: Proc. HB’10 (2010), pp. 386–390.

  24. S. Henderson, “SNS beam commissioning status,” in: Proc. EPAC’04 (2004), pp. 1524–1526.

  25. V. A. Matveev, M. I. Grachev, L. V. Kravchuk, et al., “Spallation neutrons at INR RAS – a facility status report,” in: Proc. 17th Meeting of the Intern. Coll. on Advanced Neutron Sources (1999), Vol. 1, pp. 69–75.

  26. J. Richardson, E. Blackmore, G. Dutto, et al., “Production of simultaneous, variable energy beams from the TRIUMF cyclotron,” in: Proc. of PAC’75. IEEE Trans. Nucl. Sci. (1975), pp. 1402–1406.

  27. T. Koseki, “High intensity aspects of the J-PARC facility,” in: Proc. HB’10 (2010), pp. 16–20.

  28. M. Eshraqi, M. Brandin, I. Bustinduy, et al. “Conceptual design of the ESS linac,” in: Proc. IPAC’10 (2010), pp. 804–806.

  29. M. Vretenar, C. Carli, R. Garoby, et al., “Status of the Linac-4 project at CERN,” in: Proc. LINAC’08 (2008), pp. 64–66.

  30. M. Wendt, E. Gianfelice-Wendt, B. M. Hanna, et al., “Beam instrumentation for high-intensity, multi-GeV superconducting linacs,” in: Proc. HB’10 (2010), pp. 511–515.

  31. B. P. Murin, G. I. Batskikh,V. I. Belugin, et al., “Superconducting CW proton linac for the energy,” in: Proc. EPAC’00 (2000), pp. 954–956.

  32. A. A. Goverdovskii, “Zhasmin – molten-salt multifunctional innovative reactor,” Strana Rosatom, No. 2–3 (17–18), 4 (2014).

  33. N. E. Tyurin et al., “Accelerator complex of intense hadron beams,” Nov. Probl. Fundam. Nauki, No. 2(9), 2–52 (2010).

  34. I. M. Kapchinskii and V. A. Teplyakov, “Linear ion accelerator with spatially uniform strong focusing,” Prib. Tekh. Eksp., No. 2, 19–22 (1970).

  35. W. Barth, P. Forck, U. Ratzinger, et al., “Commissioning of IH-RFQ and IH-DTL for the GSI high-current linac,” in: Proc. LINAC’00 (2000), pp. 229–231.

  36. A. I. Balabin and G. N. Kropachev, “Beam focusing by decelerating RF fields in a drift tube linac,” Nucl. Instrum. Meth. A, 459, 87–92 (2001).

    Article  ADS  Google Scholar 

  37. A. I. Balabin and G. N. Kropachev, “Application of RF grossed lenses for beam focusing in linac,” in: Proc. LINC’96 (1996), pp. 417–419.

  38. A. S. Plastun and S. M. Polozov, “Beam dynamics simulation in DTL with RF quadrupole focusing,” in: Proc. IPAC’11 (2011), pp. 2625–2627.

  39. A. A. Kolomiets, V. A. Koshelev, A. S. Plastun, et al., “Novel DTL section for ITEP–TWAC heavy ion injector,” in: Proc. RuPAC’12 (2012), pp. 469–471.

  40. A. Pisent, G. Bisoffi, M. Cavenago, et al., “Results on the beam commissioning of the superconducting-RFQ of the new LNL injector,” in: Proc. LINAC’06 (2006), pp. 227–231.

  41. F. Sechi and M. Bujatti, Solid State Microwave High-Power Amplifiers, Artech House Inc. (2009).

  42. A. Smirnov, A. Krasnov, I. Rezanov, et al., “The layout of 352 MHz 400 kW RF power amplifier,” in: Proc. NAPAC’13 (2013), pp. 937–939.

  43. R. Gobin, D. Bogard, N. Chauvin, et al., “International fusion materials irradiation facility injector acceptance tests at CEA/Saclay: 140 mA/100 kV deuteron beam characterization,” Rev. Sci. Instrum., 85, 02A918, 1–6 (2014).

  44. N. P. Sobenin and B. V. Zverev, Electrodynamic Characteristics of Accelerating Cavities. Foundation for International Scientific and Education Cooperation, London (1999).

  45. A. N. Didenko, V. I. Kaminskii, M. V. Lalayan, and N. P. Sobenin, Superconducting Accelerating Resonators, MIFI, Moscow (2008).

    Google Scholar 

  46. N. S. Azaryan, Ju. Boudagov, D. L. Demin, et al., “Dubna–Minsk SRF technology development status report,” in: Proc. IPAC’13 (2013), pp. 2393–2395.

  47. Yu. E. Titarenko, V. F. Batyaev, K. V. Pavlov, et al., “Analysis of the parameters of the target unit of a molten-salt subcritical electronuclear facility,” At. Énerg., 117, No. 1, 19–25 (2014).

    Article  Google Scholar 

  48. V. A. Nevinitsa, A. A. Dudnikov, A. A. Frolov, et al., “Analysis of the possibility of developing a molten-salt blanket for a demonstration subcritical reactor,” ibid., pp. 15–19.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 117, No. 4, pp. 217–224, October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksent’ev, A.E., Aliev, K.A., Ashanin, I.A. et al. Conceptual Development of a 600–1000 MeV Proton Beam Accelerator-Driver with Average Beam Power >1 MW. At Energy 117, 270–277 (2015). https://doi.org/10.1007/s10512-015-9921-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-015-9921-9

Keywords

Navigation