Skip to main content
Log in

Observational Manifestations of First Galaxies in the Far Infrared Range

  • Published:
Astrophysics Aims and scope

A Correction to this article was published on 01 June 2022

This article has been updated

High-redshift galaxies (z ≳ 9) are currently observed in the near-infrared (1.4-2 μm), mid-infrared (IR) (5-28.8 μm), and submillimeter (500-1000 μm) ranges. The far IR band, which carries important information on fundamental processes in early galaxies corresponding to the mid-infrared range in the restframe is hidden from the observer by the earth’s atmosphere. We consider the parameters of the emission from galaxies at high redshifts and the possibility of observing them in the far IR using gravitational lensing on massive galactic clusters. The emission presumably arises predominantly in gas ionized by ultraviolet (UV) and X-ray emission of stars and the central supermassive black holes (SMBH) of host galaxy. The metallicity of the gas of the parent galaxies lies within an interval of -6 ≤ [Z/H] ≤ -1, as follows from observations of distant galaxies at (z ≳ 9). We estimate the spectral features in the far IR range and the conditions under which these galaxies can be detected. It is shown that the spectral lines Pf-α and Hm-α, along with several lines of metals in the mid IR range ([NeV] I7.6, [SIV] 10.5, [NeIII] 15.6, [NeV] 24.1, [OIV] 25.8 μm, etc.), can be sufficiently bright to be detected. With using gravitational lensing on known galactic clusters, the number of expected high-redshift candidates in the far IR is large enough to carry out a program of observations on the “Millimetron” Space Observatory in the 70-500 μm wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. R. J. Bouwens, P. A. Oesch, I. Labbé, et al., Astrophys. J. 830, 67 (2016).

    Article  ADS  Google Scholar 

  2. P. A. Oesch, G. Brammer, P. G. van Dokkum, et al., Astrophys. J. 819, 129 (2016).

    Article  ADS  Google Scholar 

  3. T. Hashimoto, N. Laporte, K. Mawatari, et al., Nature (London) 557, 392 (2018).

    Article  ADS  Google Scholar 

  4. L. Jiang, N. Kashikawa, S. Wang, et al., Nature Astron. 5, 256 (2021).

    Article  ADS  Google Scholar 

  5. N. Laporte, R. A. Meyer, R. S. Ellis, et al., Mon. Not. Roy. Astron. Soc. 505, 3336 (2021).

    Article  ADS  Google Scholar 

  6. Y. Harikane, A. K. Inoue, K. Mawatari, et al., arXiv e-prints arXiv:2112. 09141 (2021).

  7. S. Rojas-Ruiz, S. L. Finkelstein, M. B. Bagley, et al., Astrophys. J. 891, 146 (2020).

    Article  ADS  Google Scholar 

  8. P. A. Oesch, R. J. Bouwens, G. D. Illingworth, et al., Astrophys. J. 786, 108 (2014).

    Article  ADS  Google Scholar 

  9. S. Tacchella, S. L. Finkelstein, M. Bagley, et al., arXiv e-prints arXiv:2111.05351 (2021).

  10. Y. Tamura, K. Mawatari, T. Hashimoto, et al., Astrophys. J. 874, 27 (2019).

    Article  ADS  Google Scholar 

  11. K.-I. Tadaki, A. Tsujita, Y. Tamura, et al., arXiv e-prints arXiv:2202.09945 (2022).

  12. A. Pallottini, A. Ferrara, S. Gallerani, et al., Mon. Not. Roy. Astron. Soc. 465, 2540 (2017).

    Article  ADS  Google Scholar 

  13. B. Ciardi and A. Ferrara, Space Sci. Rev. 116, 625 (2005).

    Article  ADS  Google Scholar 

  14. T. Karlsson, V. Bromm, and J. Bland-Hawthorn, Rev. Modern Phys. 85, 809 (2013).

    Article  ADS  Google Scholar 

  15. V. Bromm, A. Ferrara, P. S. Coppi, et al., Mon. Not. Roy. Astron. Soc. 328, 969 (2001).

    Article  ADS  Google Scholar 

  16. R. Schneider, A. Ferrara, P. Natarajan, et al., Astrophys. J. 571, 30 (2002).

    Article  ADS  Google Scholar 

  17. R. Decarli, F. Walter, B. P. Venemans, et al., Astrophys. J. 854, 97 (2018).

    Article  ADS  Google Scholar 

  18. J. Yang, F. Wang, X. Fan, et al., Atrophys. J. Lett. 897, L14 (2020).

    Article  ADS  Google Scholar 

  19. M. Volonteri, M. J. Rees, Astrophys. J. 633, 624 (2005).

    Article  ADS  Google Scholar 

  20. P. Madau, M. J. Rees, M. Volonteri, et al., Astrophys. J. 604, 484 (2004).

    Article  ADS  Google Scholar 

  21. T. Alexander and P. Natarajan, Science 345, 1330 (2014).

    Article  ADS  Google Scholar 

  22. F. Pacucci, P. Natarajan, M. Volonteri, et al., Astrophys. J. Lett. 850, L42 (2017).

    Article  ADS  Google Scholar 

  23. L. Mayer and S. Bonoli, Reports on Progress in Phys. 82, 016901 (2019).

    Article  ADS  Google Scholar 

  24. M. A. Latif and S. Khochfar, Mon. Not. Roy. Astron. Soc. 497, 3761 (2020).

    Article  ADS  Google Scholar 

  25. X. Shen, P. F. Hopkins, C.-A. Faucher-Giguère, et al., Mon. Not. Roy. Astron. Soc. 495, 3252 (2020).

    Article  ADS  Google Scholar 

  26. L. Y. A. Yung, R. S. Somerville, S. L. Finkelstein, et al., Mon. Not. Roy. Astron. Soc. 508, 2706 (2021).

    Article  ADS  Google Scholar 

  27. P. Natarajan, F. Pacucci, A. Ferrara, et al., Astrophys. J. 838, 117 (2017).

    Article  ADS  Google Scholar 

  28. J. Kalirai, Contemporary Phys. 59, 251 (2018).

    Article  ADS  Google Scholar 

  29. E. O. Vasiliev, Y. A. Shchekinov, and B. B. Nath, arXiv e-prints arXiv:2003.14036 (2020).

  30. N. S. Kardashev, I. D. Novikov, V. N. Lukash, et al., Phys. Uspekhi 57, 1199 (2014).

    Article  ADS  Google Scholar 

  31. I. D. Novikov, S. F. Likhachev, Y. A. Shchekinov, et al., Phys.-Usp. 64, 386 (2021).

    Article  ADS  Google Scholar 

  32. M. Bartelmann, Classical and Quantum Gravity 27, 233001 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  33. J.-P. Kneib and P. Natarajan, Astron. Astrophys. Rev. 19, 47 (2011).

    Article  ADS  Google Scholar 

  34. G. Soucail, B. Fort, Y. Mellier, et al., Astron. Astrophys. 172, L14 (1987).

    ADS  Google Scholar 

  35. R. Lynds and V. Petrosian, in: Bulletin of the American Astron. Soc. 18, 1014 (1986).

    Google Scholar 

  36. B. Paczynski, Nature (London) 325, 572 (1987).

    Article  ADS  Google Scholar 

  37. M. Postman, D. Coe, N. Benítez, et al., Astrophys. J. Suppl. 199, 25 (2012).

    Article  ADS  Google Scholar 

  38. D. Coe, B. Salmon, M. Bradaè, et al., Astrophys. J. 884, 85 (2019).

    Article  ADS  Google Scholar 

  39. N. A. Grogin, D. D. Kocevski, S. M. Faber, et al., Astrophys. J. Suppl. 197, 35 (2011).

    Article  ADS  Google Scholar 

  40. A. M. Koekemoer, S. M. Faber, H. C. Ferguson, et al., Astrophys. J. Suppl. 197, 36 (2011).

    Article  ADS  Google Scholar 

  41. T. Treu, K. B. Schmidt, G. B. Brammer, et al., Astrophys. J. 812, 114 (2015).

    Article  ADS  Google Scholar 

  42. L. D. Bradley, A. Zitrin, D. Coe, et al., Astrophys. J. 792, 76 (2014).

    Article  ADS  Google Scholar 

  43. R. J. Bouwens, L. Bradley, A. Zitrin, et al., Astrophys. J. 795, 126 (2014).

    Article  ADS  Google Scholar 

  44. R. Kawamata, M. Ishigaki, K. Shimasaku, et al., Astrophys. J. 855, 4 (2018).

    Article  ADS  Google Scholar 

  45. P. A. Oesch, R. J. Bouwens, G. D. Illingworth, et al., Astrophys. J. 855, 105 (2018).

    Article  ADS  Google Scholar 

  46. Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, et al., Astron. Astrophys. 594, A13 (2016).

  47. A. Kubota and C. Done, Mon. Not. Roy. Astron. Soc. 480, 1247 (2018).

    Article  ADS  Google Scholar 

  48. A. Kubota and C. Done, Mon. Not. Roy. Astron. Soc. 489, 524 (2019).

    Article  ADS  Google Scholar 

  49. M. A. Abramowicz, B. Czerny, J. P. Lasota, et al., Astrophys. J. 332, 646 (1988).

    Article  ADS  Google Scholar 

  50. B. Czerny, Universe 5, 131 (2019).

    Article  ADS  Google Scholar 

  51. M. Volonteri and A. E. Reines, Atrophys. J. Lett. 820, L6 (2016).

    Article  ADS  Google Scholar 

  52. V. F. Baldassare, C. Dickey, M. Geha, et al., Atrophys. J. Lett. 898, L3 (2020).

    Article  ADS  Google Scholar 

  53. A. E. Reines, Nature, Astron. 6, 26 (2022).

    Google Scholar 

  54. E. Zackrisson, C.-E. Rydberg, D. Schaerer, et al., Astrophys. J. 740, 13 (2011).

    Article  ADS  Google Scholar 

  55. C. Leitherer, D. Schaerer, J. D. Goldader, et al., Astrophys. J. Suppl. 123, 3 (1999).

    Article  ADS  Google Scholar 

  56. D. Schaerer, Astron. Astrophys. 382, 28 (2002).

    Article  ADS  Google Scholar 

  57. G. A. Vázquez and C. Leitherer, Astrophys. J. 621, 695 (2005).

    Article  ADS  Google Scholar 

  58. G. Bruzual and S. Charlot, Mon. Not. Roy. Astron. Soc. 344, 1000 (2003).

    Article  ADS  Google Scholar 

  59. A. Raiter, D. Schaerer, and R. A. E. Fosbury, Astron. Astrophys. 523, A64 (2010).

    Article  ADS  Google Scholar 

  60. J. D. Schnittman, Classical and Quantum Gravity 30, 244007 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  61. C. Ricci, F. E. Bauer, E. Treister, et al., Mon. Not. Roy. Astron. Soc. 468, 1273 (2017).

    ADS  Google Scholar 

  62. M. Bischetti, C. Feruglio, E. Piconcelli, et al., arXiv e-prints arXiv:2009.01112 (2020).

  63. J. F. Wu, A. J. Baker, T. M. Heckman, et al., Astrophys. J. b, 251 (2019).

  64. T. J. L. C. Bakx, Y. Tamura, T. Hashimoto, et al., Mon. Not. Roy. Astron. Soc. 493, 4294 (2020).

    Article  ADS  Google Scholar 

  65. T. Morishita, M. Trenti, M. Stiavelli, et al., Astrophys. J. 867, 150 (2018).

    Article  ADS  Google Scholar 

  66. G. de La Vieuville, D. Bina, R. Pello, et al., Astron. Astrophys. 628, A3 (2019).

    Article  Google Scholar 

  67. K. L. Larson, D. B. Sanders, J. E. Barnes, et al., Astrophys. J. 825, 128 (2016).

    Article  ADS  Google Scholar 

  68. S. Martín, S. Aalto, K. Sakamoto, et al., Astron. Astrophys. 590, A25 (2016).

    Article  Google Scholar 

  69. N. Scoville, N. Lee, P. Vanden Bout, et al., Astrophys. J. 837, 150 (2017).

    Article  ADS  Google Scholar 

  70. D. Liu, E. Daddi, E. Schinnerer, et al., Astrophys. J. 909, 56 (2021).

    Article  ADS  Google Scholar 

  71. F. Tombesi, M. Meléndez, S. Veilleux, et al., Nature (London) 519, 436 (2015).

    Article  ADS  Google Scholar 

  72. S. Veilleux, A. Bolatto, F. Tombesi, et al., Astrophys. J. 843, 18 (2017).

    Article  ADS  Google Scholar 

  73. O. Agertz and A. V. Kravtsov, Astrophys. J. 804, 18 (2015).

    Article  ADS  Google Scholar 

  74. A. Pallottini, A. Ferrara, S. Gallerani, et al., arXiv e-prints arXiv:2201.02636 (2022).

  75. M. Habouzit, Y. Li, R. S. Somerville, et al., arXiv e-prints arXiv:2006.10094 (2020).

  76. G. J. Ferland, M. Chatzikos, F. Guzmán, et al., Revista Mexicana de Astronomía y Astrofísica 53, 385 (2017).

    ADS  Google Scholar 

  77. E. O. Vasiliev and Y. A. Shchekinov, Astrophys. J. 887, 174 (2019).

    Article  ADS  Google Scholar 

  78. Y. Toba, Y. Ueda, K. Matsuoka, et al., Mon. Not. Roy. Astron. Soc. 484, 196 (2019).

    Article  ADS  Google Scholar 

  79. E. Jullo and J. P. Kneib, Mon. Not. Roy. Astron. Soc. 395, 1319 (2009).

    Article  ADS  Google Scholar 

  80. A. Zitrin, T. Broadhurst, K. Umetsu, et al., Mon. Not. Roy. Astron. Soc. 396, 1985 (2009).

    Article  ADS  Google Scholar 

  81. M. Oguri, Publ. Astron. Soc. Japan 62, 1017 (2010).

    Article  ADS  Google Scholar 

  82. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (1992).

  83. J. Vega-Ferrero, J. M. Diego, and G. M. Bernstein, Mon. Not. Roy. Astron. Soc. 486, 5414 (2019).

    Article  ADS  Google Scholar 

  84. X. Shen, M. Vogelsberger, D. Nelson, et al., Mon. Not. Roy. Astron. Soc. 510, 5560 (2022).

    Article  ADS  Google Scholar 

  85. M. Franco, D. Elbaz, L. Zhou, et al., Astron. Astrophys. 643, A30 (2020).

    Article  Google Scholar 

  86. R. J. Bouwens, M. Stefanon, P. A. Oesch, et al., Astrophys. J. 880, 25 (2019).

    Article  ADS  Google Scholar 

  87. X. Ma, C. C. Hayward, C. M. Casey, et al., Mon. Not. Roy. Astron. Soc. 487, 1844 (2019).

    Article  ADS  Google Scholar 

  88. P. Schechter, Astrophys. J. 203, 297 (1976).

    Article  ADS  Google Scholar 

  89. A. Fialkov and A. Loeb, Astrophys. J. 806, 256 (2015).

    Article  ADS  Google Scholar 

  90. R. C. Livermore, S. L. Finkelstein, and J. M. Lotz, Astrophys. J. 835, 113 (2017).

    Article  ADS  Google Scholar 

  91. A. A. Ermash, S. V. Pilipenko, and V. N. Lukash, Astron. Lett. 46, 298 (2020).

    Article  ADS  Google Scholar 

  92. U. Lisenfeld and A. Ferrara, Astrophys. J. 496, 145 (1998).

    Article  ADS  Google Scholar 

  93. A. Rémy-Ruyer, S. C. Madden, F. Galliano, et al., Astron. Astrophys. 563, A31 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Larchenkova.

Additional information

Translated from Astrofizika, Vol. 65, No. 2, pp. 179-202, May 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larchenkova, T.I., Ermash, A.A., Vasiliev, E.O. et al. Observational Manifestations of First Galaxies in the Far Infrared Range. Astrophysics 65, 161–181 (2022). https://doi.org/10.1007/s10511-022-09729-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09729-z

Keywords

Navigation