Skip to main content
Log in

Emission Spectrum of Dust in a Cooling Gas

  • Published:
Astrophysics Aims and scope

The emission spectrum of dust undergoing substantial temperature fluctuations behind strong shocks (>100 km/s) is modeled. The model includes calculating the temperature distribution function of the dust particles owing to stochastic heating by electrons in the ambient plasma, as well as the features of the resulting spectral distribution of the emission from the dust. As the surrounding plasma cools, the emission spectrum changes and differs noticeably from the “quasi-Planck” spectrum of isothermal dust (or a superposition of spectra of this sort). The character of these changes can be used for diagnostics of the thermal state of the plasma. Objects where these effects can be significant are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ostriker and C. McKee, Reviews of Modern Physics 60, 1 (1988).

    Article  ADS  Google Scholar 

  2. B. Draine and C. McKee, Annual Rev. Astron. Astrophys. 31, 373 (1993).

    Article  ADS  Google Scholar 

  3. T. Lozinskaya, Stellar Explosions and Stellar Wind in Galaxies [in Russian], URSS: Izdatel’stvoKRASAND, Moscow (2012)

  4. Y. Shchekinov, Galaxies 6, 62 (2018).

    Article  ADS  Google Scholar 

  5. P. Sharma, A. Roy, B. Nath, et al., Mon. Not. Roy. Astron. Soc. 443, 3463 (2014).

    Article  ADS  Google Scholar 

  6. E. Vasiliev, B. Nath, and Y. Shchekinov, Mon. Not. Roy. Astron. Soc. 446, 1703 (2015).

    Article  ADS  Google Scholar 

  7. K. Sarkar, B. Nath, and P. Sharma, Mon. Not. Roy. Astron. Soc. 453, 3827 (2015).

    Article  ADS  Google Scholar 

  8. C.-G. Kim and E. Ostriker, Astrophys. J. 853, 21 (2018).

    Article  Google Scholar 

  9. D. Fielding, E. Quataert, and D. Martizzi, Mon. Not. Roy. Astron. Soc. 481, 3325 (2018).

    Article  ADS  Google Scholar 

  10. E. Vasiliev, Y. Shchekinov, and B. Nath, Mon. Not. Roy. Astron. Soc. 486, 3685 (2019).

    ADS  Google Scholar 

  11. E. Dwek and M. Werner, Astrophys. J. 248, 138 (1981).

    Article  ADS  Google Scholar 

  12. J. Burke and J. Silk, Astrophys. J. 190, 1 (1974).

    Article  ADS  Google Scholar 

  13. T. Douvion, P. Lagage, C. Cesarsky, et al., Astron. Astrophys. 373, 281 (2001).

    Article  ADS  Google Scholar 

  14. M. Bocchio, A. Jones, L. Verstraete, et al., Astron. Astrophys. 556, 11 (2013).

    Article  Google Scholar 

  15. E. Dwek, Astrophys. J. 302, 363 (1986).

    Article  ADS  Google Scholar 

  16. S. Drozdov and Yu. Shchekinov, Astrophysics 62, 540 (2019).

    Article  ADS  Google Scholar 

  17. E. Vasiliev, Mon. Not. Roy. Astron. Soc. 431, 638 (2013).

    Article  ADS  Google Scholar 

  18. J. Shull, Astrophys. J. 234, 761 (1979).

    Article  ADS  Google Scholar 

  19. C. McKee and D. Hollenbach, Astrophys. J. 318, 674 (1987).

    Article  ADS  Google Scholar 

  20. B. Draine, Physics of the Interstellar and Intergalactic Medium, Princeton University Press: Princeton & Oxford (2011).

    Book  Google Scholar 

  21. A. Parravano, D. Hollenbach, and C. McKee, Astrophys. J. 584, 797 (2003).

    Article  ADS  Google Scholar 

  22. B. Draine and E. Salpeter, Astrophys. J. 231, 77 (1979).

    Article  ADS  Google Scholar 

  23. E. Dwek, Astrophys. J. 322, 812 (1987).

    Article  ADS  Google Scholar 

  24. B. Draine and N. Anderson, Astrophys. J. 292, 494 (1985).

    Article  ADS  Google Scholar 

  25. Y. Fangting, V. Buat, et al., Astron. Astrophys. 582, A90 (2015).

    Article  Google Scholar 

  26. L. Cortese, J. Fritz, S. Bianchi, et al., Mon. Not. Roy. Astron. Soc. 440, 942 (2014).

    Article  ADS  Google Scholar 

  27. R. Hildebrand and Q. Roy, Astron. Soc. 24, 267 (1983).

    ADS  Google Scholar 

  28. E. Micelotta, A. Jones, A. Tielens, et al., Astron. Astrophys. 510, 37 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Drozdov.

Additional information

Translated from Astrofizika, Vol. 64, No. 1, pp. 143-158, February 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, S.A. Emission Spectrum of Dust in a Cooling Gas. Astrophysics 64, 126–140 (2021). https://doi.org/10.1007/s10511-021-09674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-021-09674-3

Keywords

Navigation