Skip to main content
Log in

Parametrical amplification of Alfvén waves in heat-releasing ionized media with magnetoacoustic instability

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The three wave interaction of the powerful magnetoacoustic wave with the Alfvén waves in heat-releasing ionized media is considered. The conditions of an amplification and generation of Alfvén waves due to the parametrical energy transfer from unstable magnetoacoustic waves are obtained. We find the acoustic increments and show the possibility of Alfvén waves amplifications in some solar atmosphere regions with the acoustical instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150, 405 (1942). doi:10.1038/150405d0

    ADS  Google Scholar 

  • Alfvén, H.: Magneto hydrodynamic waves, and the heating of the solar corona. Mon. Not. R. Astron. Soc. 107, 211 (1947)

    ADS  Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880 (1999). doi:10.1086/307502

    ADS  Google Scholar 

  • Banerjee, D., O’Shea, E., Doyle, J.G.: Long-period oscillations in polar plumes as observed by cds on soho. Sol. Phys. 196, 63 (2000). doi:10.1023/A:1005265230456

    ADS  Google Scholar 

  • Banerjee, D., O’Shea, E., Doyle, J.G., Goossens, M.: The nature of network oscillations. Astron. Astrophys. 380, L39 (2001). doi:10.1051/0004-6361:20011548

    ADS  Google Scholar 

  • Banerjee, D., Gupta, G.R., Teriaca, L.: Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267 (2011). doi:10.1007/s11214-010-9698-z

    ADS  Google Scholar 

  • Braje, R.A., Elizarova, A.A.: Mathematical models of transport phenomena in inverse gases. Math. Model. 20, 110 (2008). doi:10.1134/S2070048209020082

    Google Scholar 

  • Brodin, G., Stenflo, L.: Three-wave coupling coefficients for MHD plasmas. J. Plasma Phys. 39, 277 (1988). doi:10.1017/S0022377800013027

    ADS  Google Scholar 

  • Brodin, G., Stenflo, L., Shukla, P.K.: Nonlinear coupling between Alfvén and fast magnetosonic waves. J. Plasma Phys. 69, 183 (2003). doi:10.1017/S0022377803002204

    ADS  Google Scholar 

  • Carbonell, M., Oliver, R., Ballester, J.L.: Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties. Astron. Astrophys. 415, 739 (2004). doi:10.1051/0004-6361:20034630

    ADS  Google Scholar 

  • Chin, R., Verwichte, E., Rowlands, G., Nakariakov, V.M.: Self-organization of magnetoacoustic waves in a thermally unstable environment. Phys. Plasmas 17, 032107 (2010). doi:10.1063/1.3314721

    ADS  Google Scholar 

  • Chin, Y.-C., Wentzel, D.G.: Nonlinear dissipation of Alfvén waves. Astrophys. Space Sci. 16, 465 (1972). doi:10.1007/BF00642346

    ADS  Google Scholar 

  • Dahlburg, R.B., Mariska, J.T.: Influence of heating rate on the condensational instability. Sol. Phys. 117, 51 (1988). doi:10.1007/BF00148571

    ADS  Google Scholar 

  • DeForest, C.E., Gurman, J.B.: Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217 (1998). doi:10.1086/311460

    ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R.W.: Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23 (2000)

    ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705 (2004). doi:10.1051/0004-6361:20034233

    ADS  Google Scholar 

  • De Moortel, I.: Propagating magnetohydrodynamics waves in coronal loops. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 364, 461 (2006). doi:10.1098/rsta.2005.1710

    ADS  Google Scholar 

  • De Moortel, I.: Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65 (2009). doi:10.1007/s11214-009-9526-5

    ADS  Google Scholar 

  • De Moortel, I., Nakariakov, V.M.: Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 370, 3193 (2012). doi:10.1098/rsta.2011.0640

    ADS  Google Scholar 

  • Engvold, O., Jakobsson, H., Tandberg-Hanssen, E., Gurman, J.B., Moses, D.: On the nature of prominence absorption and emission in highly ionized iron and in neutral hydrogen. Sol. Phys. 202, 293 (2001). doi:10.1023/A:1012285218862

    ADS  Google Scholar 

  • Field, G.B.: Thermal instability. Astrophys. J. 142, 531 (1965). doi:10.1086/148317

    ADS  Google Scholar 

  • Galimov, R.N., Molevich, N.E.: Structure and bifurcations of plane shock waves in a vibrationally excited gas with an external pumping source. Fluid Dyn. 54, 258 (2009). doi:10.1134/S0015462809010165

    Google Scholar 

  • Galimov, R.N., Molevich, N.E., Troshkin, N.V.: Acoustical instability of inhomogeneous gas flows with distributed heat release. Acta Acust. Acust. 98, 372 (2012)

    Google Scholar 

  • Gary, G.A.: Plasma beta above a solar active region: rethinking the paradigm. Solar Physics 203, 71 (2001)

    ADS  Google Scholar 

  • Gary, G.A., Alexander, D.: Constructing the coronal magnetic field by correlating parameterized magnetic field lines with observed coronal plasma structures. Sol. Phys. 186, 123 (1999). doi:10.1023/A:1005147921110

    ADS  Google Scholar 

  • Getman, K.V., Livshits, M.A.: Solar flares with long soft X-ray decays: energy balance in giant loops. Astron. Rep. 44, 225 (2000). doi:10.1134/1.163848

    ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Rudenko, G.V., Borovik, V.N., Grigorieva, I.Y., Slemzin, V.A., Bogachev, S.A., Kuzin, S.V., Zhitnik, I., Pertsov, A.A., Shibasaki, K., Livshits, M.A.: Plasma parameters in a post-eruptive arcade observed with CORONAS-F/SPIRIT, Yohkoh/SXT, SOHO/EIT, and in microwaves. Publ. Astron. Soc. Jpn. 58, 55 (2006a). doi:10.1093/pasj/58.1.55

    ADS  Google Scholar 

  • Grechnev, V.V., Kuzin, S.V., Urnov, A.M., Zhitnik, I.A., Uralov, A.M., Bogachev, S.A., Livshits, M.A., Bugaenko, O.I., Zandanov, V.G., Ignat’ev, A.P., Krutov, V.V., Oparin, S.N., Pertsov, A.A., Slemzin, V.A., Chertok, I.M., Stepanov, A.I.: Long-lived hot coronal structures observed with CORONAS-F/SPIRIT in the Mg XII line. Sol. Syst. Res. 40, 286 (2006b). doi:10.1134/S0038094606040046

    ADS  Google Scholar 

  • Heyvaerts, J.: The thermal instability in a magnetohydrodynamic medium. Astron. Astrophys. 37, 65 (1974)

    ADS  Google Scholar 

  • Hiei, E., Hundhausen, A.J.: Development of a coronal helmet streamer of 24 January 1992. In: Proceedings of the 153rd Colloquium of the International Astronomical Union Held in Makuhari, vol. 125 (1992)

    Google Scholar 

  • Hildner, E.: The formation of solar quiescent prominences by condensation. Sol. Phys. 35, 123 (1974). doi:10.1007/BF00156962

    ADS  Google Scholar 

  • Ibanez, S.M.H., Sanchez, D.N.M.: Propagation of sound and thermal waves in a plasma with solar abundances. Astrophys. J. 396, 717 (1992). doi:10.1086/171754

    ADS  Google Scholar 

  • Ichimoto, K., Sakurai, T., Nishino, Y., Noguchi, M., Shinoda, K., Yamaguchi, A., Kumagai, K., Hirayama, T., Tsuneta, S., Acton, L.: Optical and X-ray observations of the X9 flare on 2nd Nov. 1992. In: Proc. Second Japan-China Seminar on the Solar Physics, vol. 151 (1994)

    Google Scholar 

  • Kaburaki, O., Uchida, Y.: Magnetohydrodynamic wave-mode coupling. Quantum field-theoretical approach to weakly non-linear case with application to solar coronal heating. Publ. Astron. Soc. Jpn. 23, 405 (1971)

    ADS  Google Scholar 

  • Kogan, E.Ya., Molevich, N.E.: Sound waves in a nonequilibrium molecular gas. Sov. Phys. J. 29, 547 (1986). doi:10.1007/BF00895501

    Google Scholar 

  • Koutchmy, S., Zhugzhda, Ia.D., Locans, V.: Short period coronal oscillations—observation and interpretation. Sol. Phys. 120, 185 (1983)

    Google Scholar 

  • Kukhianidze, V., Zaqarashvili, T.V., Khutsishvili, E.: Observation of kink waves in solar spicules. Astron. Astrophys. 449, L35 (2006). doi:10.1051/0004-6361:200600018

    ADS  Google Scholar 

  • Landi, E., Del Zanna, G., Young, P.R., Dere, K.P., Mason, H.E.: CHIANTI an atomic database for emission lines. XII. Version 7 of the database. Astron. Astrophys. 744, 9 (2012). doi:10.1088/0004-637X/744/2/99

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, 2nd edn. Fluid Mechanics, vol. 6. Butterworth–Heinemann, Stoneham (1987)

    Google Scholar 

  • Lensky, N.G., Lyakhnovsky, V., Navon, O.: An action for black hole membranes. J. Fluid Mech. 460, 39 (2002). doi:10.1017/S0022112002008194

    ADS  Google Scholar 

  • Li, J., Raymond, J.C., Acton, L.W., Kohl, J.L., Romoli, M., Noci, G., Naletto, G.: Physical structure of a coronal streamer in the closedfield region as observed from UVCS/SOHO and SXT/YOHKOH. Astrophys. J. 506, 431 (1998). doi:10.1086/306244

    ADS  Google Scholar 

  • Makaryan, V.G., Molevich, N.E.: Stationary shock waves in nonequilibrium media. Plasma Sources Sci. Technol. 16, 124 (2007). doi:10.1088/0963-0252/16/1/017

    ADS  Google Scholar 

  • Makaryan, V.G., Molevich, N.E.: Structure of a gasdynamic disturbance in a thermodynamically nonequilibrium medium with a power-law relaxation model. Fluid Dyn. 39, 836 (2004). doi:10.1007/s10697-005-0018-3

    ADS  Google Scholar 

  • Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. Ser. 133, 403 (1998). doi:10.1051/aas:1998330

    ADS  Google Scholar 

  • McIntosh, S.W., de Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., Goossens, M.: Alfvenic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477 (2011). doi:10.1038/nature10235

    ADS  Google Scholar 

  • Modi, K.V., Sharma, R.P.: Nonlinear interaction of inertial Alfvén wave with magnetosonic wave and cavitation phenomena. Astrophys. Space Sci. 350, 223 (2014). doi:10.1007/s10509-013-1743-4

    ADS  Google Scholar 

  • Molevich, N.E., Oraevsky, A.N.: Second viscosity in media in thermodynamic disequilibrium. J. Exp. Theor. Phys. 67, 504 (1988)

    Google Scholar 

  • Molevich, N.E.: Parametric amplification of vortex waves in an acoustically active medium. Tech. Phys. Lett. 27, 596 (2001a). doi:10.1134/1.1388956

    ADS  Google Scholar 

  • Molevich, N.E.: Amplification of vortex and temperature waves in the process of induced scattering of sound in thermodynamically nonequilibrium media. High Temp. 39, 884 (2001b)

    Google Scholar 

  • Molevich, N.E.: Acoustical properties of nonequilibrium media. AIAA Pap. 2004, 1020 (2004)

    Google Scholar 

  • Molevich, N.E., Klimov, A.I., Makaryan, V.G.: Influence of thermodynamic nonequilibrium on acoustical properties of gas. Int. J. Aeroacoust. 4, 345 (2005)

    Google Scholar 

  • Molevich, N.E., Zavershinsky, D.I., Galimov, R.N., Makaryan, V.G.: Traveling self-sustained structures in interstellar clouds with the isentropic instability. Astrophys. Space Sci. 334, 35 (2011). doi:10.1007/s10509-011-0683-0

    ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833 (2001). doi:10.1086/320559

    ADS  Google Scholar 

  • Muglach, K., Hofmann, A., Staude, J.: Dynamics of solar active regions. II. Oscillations observed with MDI and their relation to the magnetic field topology. Astron. Astrophys. 437, 1055 (2005). doi:10.1051/0004-6361:20041164

    ADS  Google Scholar 

  • Murawski, K.: Alfvén-magnetosonic waves interaction in the solar corona. Sol. Phys. 139, 279 (1992). doi:10.1007/BF00159155

    ADS  Google Scholar 

  • McKenzie, D.E., Hudson, H.S.: X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. 519, L93 (1999). doi:10.1086/312110

    ADS  Google Scholar 

  • Nakariakov, V.M., Oraevsky, V.N.: Resonant interactions of modes in coronal magnetic flux tubes. Sol. Phys. 160, 289 (1995). doi:10.1007/BF00732809

    ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862 (1999). doi:10.1126/science.285.5429.862

    ADS  Google Scholar 

  • Nakariakov, V.M., Mendoza-Briceno, C.A., Ibanez, S., Miguel, H.: Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas. Astron. Astrophys. 528, 767 (2000). doi:10.1086/308195

    ADS  Google Scholar 

  • Ofman, L., Nakariakov, V.M., Sehgal, N.: Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071 (2000). doi:10.1086/308691

    ADS  Google Scholar 

  • Ofman, L., Davila, J.M.: Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction. Astrophys. J. 476, 357 (2002). doi:10.1086/345548

    ADS  Google Scholar 

  • Ofman, L., Gary, S.P., VinAs, A.: Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra. J. Geophys. Res. Space Phys. 107, 1461 (2002). doi:10.1029/2002JA009432

    ADS  Google Scholar 

  • Osterbrock, D.: The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. Astrophys. J. 134, 347 (1961). doi:10.1086/147165

    ADS  Google Scholar 

  • Parikh, M.K., Wilczek, F.: An action for black hole membranes. Phys. Rev. D 58, 064011 (1998). doi:10.1103/PhysRevD.58.064011

    ADS  Google Scholar 

  • Parker, E.N.: Instability of thermal fields. Astrophys. J. 117, 431 (1953). doi:10.1086/145707

    ADS  Google Scholar 

  • Pasachoff, J.M., Babcock, B.A., Russell, K.D., Seaton, D.B.: Short-period waves that heat the corona detected at the 1999 eclipse. Sol. Phys. 207, 241 (2002). doi:10.1023/A:1016297800478

    ADS  Google Scholar 

  • Petrukhin, N.S., Fajnstejn, S.M.: Parametric generation in Alfven and sound waves in the solar atmosphere. II—Isothermal atmosphere. Astron. Ž. 61, 535 (1984)

    ADS  Google Scholar 

  • Perelomova, A., Wojda, P.: Generation of the vorticity mode by sound in a vibrationally relaxing gas. Cent. Eur. J. Phys. 10, 1116 (2012). doi:10.2478/s11534-012-0098-8

    Google Scholar 

  • Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. CRC Press, Boca Raton–New York (2003)

    Google Scholar 

  • Robbrecht, E., Verwichte, E., Berghmans, D., Hochedez, J.F., Poedts, S., Nakariakov, V.M.: Slow magnetoacoustic waves in coronal loops: EIT and TRACE. Astron. Astrophys. 370, 591 (2001). doi:10.1051/0004-6361:20010226

    ADS  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.S.: Dynamics of the quiescent solar corona. Astrophys. J. 220, 643 (1978). doi:10.1086/155949

    ADS  Google Scholar 

  • Sagdeev, R.Z., Galeev, A.A.: Nonlinear Plasma Theory. Benjamin, New York (1969)

    Google Scholar 

  • Sakurai, T., Ichimoto, K., Raju, K.P., Singh, J.: Spectroscopic observation of coronal waves. Sol. Phys. 209, 265 (2002). doi:10.1023/A:1021297313448

    ADS  Google Scholar 

  • Savage, S.L., Mckenzie, D.E., Reeves, K.K.: Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. Lett. 747, 7 (2012). doi:10.1088/2041-8205/747/2/L40

    Google Scholar 

  • Shen, Y.R.: The Principles of Nonlinear Optics. Wiley, New York (1984). 576 pages

    Google Scholar 

  • Shergelashvili, B.M., Zaqarashvili, T.V., Poedts, S., Roberts, B.: “Swing absorption” of fast magnetosonic waves in inhomogeneous media. Astron. Astrophys. 429, 767 (2005). doi:10.1051/0004-6361:20041494

    ADS  Google Scholar 

  • Shergelashvili, B.M., Poedts, S., Pataraya, A.D.: Nonmodal cascade in the compressible solar atmosphere: self-heating, an alternative way to enhance wave heating. Astrophys. J. 642, L73 (2006). doi:10.1086/504350

    ADS  Google Scholar 

  • Shergelashvili, B.M., Maes, C., Poedts, S., Zaqarashvili, T.V.: Amplification of compressional magnetohydrodynamic waves in systems with forced entropy oscillations. Phys. Rev. E 76, 046404 (2007). doi:10.1086/504350

    ADS  Google Scholar 

  • Shibasaki, K.: High-beta disruption in the solar atmosphere. Astrophys. J. 557, 326 (2001). doi:10.1086/321651

    ADS  Google Scholar 

  • Soler, R., Ballester, J.L., Parenti, S.: Stability of thermal modes in cool prominence plasmas. Astron. Astrophys. 540, 6 (2012). doi:10.1051/0004-6361/201118492

    Google Scholar 

  • Strong, K.T.: Observations of structure and dynamics of coronal loops. In: Proceedings of Kofu Symposium, vol. 53 (1994)

    Google Scholar 

  • Suess, S.T., Gary, G.A., Nerney, S.F.: Beta in streamers. In: Habbal, S.R., Esser, R., Hollweg, J.V., Isenberg, P.A. (eds.) Solar Wind Nine. AIP Conference Proceeding, vol. 471, p. 247 (1999)

    Google Scholar 

  • Suess, S.T., Nerney, S.: Flow in streamer boundaries, and streamer stability. Adv. Space Res. 33, 668 (2004). doi:10.1016/S0273-1177(03)00237-0

    ADS  Google Scholar 

  • Tankeshwar, K.: Generalized negative bulk viscosity in liquids. J. Phys. Condens. Matter 6, 9295 (1994). doi:10.1088/0953-8984/6/44/009

    ADS  Google Scholar 

  • Terradas, J., Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R., Ballester, J.L.: Two-dimensional distribution of oscillations in a quiescent solar prominence. Astron. Astrophys. 393, 637 (2002). doi:10.1051/0004-6361:20020967

    ADS  Google Scholar 

  • Tomczyk, S., McIntosh, S.W., Keil, S.L., Judge, P.G., Schad, T., Seeley, D.H., Edmondson, J.: Alfven waves in the solar corona. Science 317, 1192 (2007). doi:10.1126/science.1143304

    ADS  Google Scholar 

  • Vesecky, J.F., Antiochos, S.K., Underwood, J.H.: Numerical modeling of quasi-static coronal loops. I—Uniform energy input. Astrophys. J. 223, 987 (1979). doi:10.1086/157462

    ADS  Google Scholar 

  • Voitenko, Y., Goossens, M.: Nonlinear excitation of small-scale Alfvén waves by fast waves and plasma heating in the solar atmosphere. Sol. Phys. 209, 37 (2002). doi:10.1023/A:1020964020154

    ADS  Google Scholar 

  • Wang, T., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: Doppler shift oscillations of hot solar coronal plasma seen by SUMER: a signature of loop oscillations? Astrophys. J. 574, L101 (2002). doi:10.1086/342189

    ADS  Google Scholar 

  • Wentzel, D.G.: Coronal heating by Alfven waves. Sol. Phys. 39, 129 (1974). doi:10.1023/A:1021297313448

    ADS  Google Scholar 

  • Wentzel, D.G.: Coronal heating by Alfven waves. II. Sol. Phys. 50, 343 (1976). doi:10.1007/BF00155297

    ADS  Google Scholar 

  • Williams, D.R., Phillips, K.J.H., Rudawy, P., Mathioudakis, M., Gallagher, P.T., O’Shea, E., Keenan, F.P., Read, P., Rompolt, B.: High-frequency oscillations in a solar active region coronal. Mon. Not. R. Astron. Soc. 326, 428 (2001). doi:10.1046/j.1365-8711.2001.04491.x

    ADS  Google Scholar 

  • Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089 (2001). doi:10.1029/2000JA0004473

    ADS  Google Scholar 

  • Yokoyama, T., Akita, K., Morimoto, T., Inoue, K., Newmark, J.: Clear evidence of reconnection inflow of a solar flare. Astrophys. J. 546, L69 (2001). doi:10.1086/318053

    ADS  Google Scholar 

  • Zaqarashvili, T.V.: Swing amplification of shear Alfvén waves through periodical density variations in a conductive medium. Astrophys. J. 552, L81 (2001). doi:10.1086/320257

    ADS  Google Scholar 

  • Zaqarashvili, T.V., Roberts, B.: Swing wave-wave interaction: coupling between fast magnetosonic and Alfvén waves. Phys. Rev. E 66, 026401 (2002). doi:10.1103/PhysRevE.66.026401

    ADS  Google Scholar 

  • Zaqarashvili, T.V., Roberts, B.: Two-wave interaction in ideal magnetohydrodynamics. Astrophys. J. 452, 1053 (2006). doi:10.1051/0004-6361:20053565

    ADS  Google Scholar 

  • Zaqarashvili, T.V., Belvedere, G.: Coupling between radial and torsional oscillations in a magnetized plasma and possible Stellar applications. Astrophys. J. 663, 553 (2007). doi:10.1086/517864

    ADS  Google Scholar 

  • Zaqarashvili, T.V., Erdélyi, R.: Oscillations and waves in solar spicules. Space Sci. Rev. 149, 335 (2009). doi:10.1007/s11214-009-9549-y

    ADS  Google Scholar 

  • Zavershinsky, D.I., Molevich, N.E.: A magnetoacoustic autowave pulse in a heat-releasing ionized gaseous medium. Tech. Phys. Lett. 39, 676 (2013). doi:10.1134/S1063785013080130

    ADS  Google Scholar 

  • Zavershinsky, D.I., Molevich, N.E.: Alfvén wave amplification as a result of nonlinear interaction with a magnetoacoustic wave in an acoustically active conducting medium. Tech. Phys. Lett. 40, 701 (2014). doi:10.1134/S1063785014080288

    ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: A nonlocal wave-wave interaction among Alfvén waves in an intermediate-\(\beta\) plasma. Phys. Plasmas 18, 032903 (2011). doi:10.1063/1.3568840

    ADS  Google Scholar 

  • Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1. Academic Press, San Diego (1966)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of education and science of Russia under Competitiveness Enhancement Program of SSAU for 2013–2020 years and by State assignment to educational and research institutions under projects 608, 1451, GR 114091840046, by RFBR under grants 13-01-97001, 14-02-97030 r-povolzhie-a, by the Grant of RF President for young researchers and post graduate students SP-3664.2013.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Molevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavershinskiy, D.I., Molevich, N.E. Parametrical amplification of Alfvén waves in heat-releasing ionized media with magnetoacoustic instability. Astrophys Space Sci 358, 22 (2015). https://doi.org/10.1007/s10509-015-2418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2418-0

Keywords

Navigation