Skip to main content
Log in

Shadow of rotating Hořava-Lifshitz black hole

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The shadow of rotating Hořava-Lifshitz black hole has been studied and it was shown that in addition to the specific angular momentum a, parameters of Hořava-Lifshitz spacetime essentially deform the shape of the black hole shadow. For a given value of the black hole spin parameter a, the presence of a parameter Λ W and KS parameter ω enlarges the shadow and reduces its deformation with respect to the one in the Kerr spacetime. We have found a dependence of radius of the shadow R s and distortion parameter δ s from parameter Λ W and KS parameter ω both. Optical features of the rotating Hořava-Lifshitz black hole solutions are treated as emphasizing the rotation of the polarization vector along null congruences. A comparison of the obtained theoretical results on polarization angle with the observational data on Faraday rotation measurements provides the upper limit for the δ parameter as δ≤2.1⋅10−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors thank the TIFR and IUCAA for warm hospitality. This research is supported in part by the projects F2-FA-F113, FE2-FA-F134, and F2-FA-F029 of the UzAS and by the ICTP through the OEA-PRJ-29 project. A.A. and B.A. acknowledge the German Academic Exchange Service (DAAD), the Volkswagen Stiftung and the TWAS Associateship grants, and thank the Max Planck Institut für GravitationsPhysik, Potsdam for the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadjon Abdujabbarov.

Appendix: Quantities in the locally non-rotating frame

Appendix: Quantities in the locally non-rotating frame

All physical quantities are indicated by parenthesis around the Greek indices in the locally non-rotating frame (LNRF). The components of \(k^{\mu}=dx^{\mu}/d\mu=\dot{x}^{\mu}\) which is tangent to the null congruence and its projections k (μ) on the LNRF are

$$ \begin{aligned} &k^{(0)} = k^{(t)} = e^{\nu}k^{0}=e^{\nu} \dot{t} , \\ &k^{(1)} = k^{(r)} = e^{\lambda}k^{1}=e^{\lambda} \dot{r} , \\ &k^{(2)} = k^{(\theta)} = e^{\mu}k^{2}=e^{\mu} \dot{\theta} , \\ &k^{(3)} = k^{(\phi)} = e^{\psi} \bigl(k^{3}- \varOmega k^{0} \bigr) = e^{\psi} (\dot{\phi} - \varOmega \dot{t} ). \end{aligned} $$
(54)

The functions ν,λ,μ and ψ are listed as following

$$ \begin{aligned} &e^{2\nu}=\frac{\rho^2 \Delta_{\rm r} \Delta_{\rm \theta}}{\varSigma^2 \varXi^2}, \\ &e^{\lambda}=\frac{\rho^2}{\Delta_{\rm r}}, \\ &e^{\mu}=\frac{\rho^2}{\Delta_{\rm \theta}}, \\ &e^{\psi}=\frac{\varXi^2 \sin^2 \theta}{\varSigma^2 \rho^2} . \end{aligned} $$
(55)

The nonzero components of the connection projected on the LNRF (Bardeen et al. 1972) are

$$ \begin{aligned} &\varGamma_{(r)(t)}^{(t)} = \varGamma_{(t)(t)}^{(r)}= \partial_{r}\nu e^{-\lambda} , \\ &\varGamma_{(\theta)(t)}^{(t)} = \varGamma_{(t)(t)}^{(\theta)}= \partial_{\theta}\nu e^{-\mu} , \\ &\varGamma_{(\theta)(r)}^{(r)} = -\varGamma_{(r)(r)}^{(\theta)}= \partial_{\theta}\lambda e^{-\mu} , \\ &\varGamma_{(\theta)(\theta)}^{(r)} = -\varGamma_{(r)(\theta)}^{(\theta)}=- \partial_{r}\mu e^{-\lambda} , \\ &\varGamma_{(\phi)(\phi)}^{(r)} = -\varGamma_{(r)(\phi)}^{(\phi)}=- \partial_{r}\psi e^{-\lambda} , \\ &\varGamma_{(\phi)(\phi)}^{(\theta)} = -\varGamma_{(\theta)(\phi)}^{(\phi)}=- \partial_{\theta}\psi e^{-\mu} , \\ &\varGamma_{(r)(\phi)}^{(t)} = \varGamma_{(t)(\phi)}^{(r)}= \varGamma_{(\phi)(r)}^{(t)} = \varGamma_{(\phi)(t)}^{(r)} \\ &\hphantom{\varGamma_{(r)(\phi)}^{(t)}}=-\varGamma_{(t)(r)}^{(\phi)}=-\varGamma_{(r)(t)}^{(\phi)}= \frac{1}{2}\partial_{r}\varOmega e^{\psi-\nu-\lambda} , \\ &\varGamma_{(\theta)(\phi)}^{(t)}=\varGamma_{(t)(\phi)}^{(\theta)}= \varGamma_{(\phi)(\theta)}^{(t)} = \varGamma_{(\phi)(t)}^{(\theta)} \\ &\hphantom{\varGamma_{(\theta)(\phi)}^{(t)}}= -\varGamma_{(t)(\theta)}^{(\phi)}=-\varGamma_{(\theta)(t)}^{(\phi)}= \frac{1}{2}\partial_{\theta}\varOmega e^{\psi-\nu-\mu} . \end{aligned} $$
(56)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atamurotov, F., Abdujabbarov, A. & Ahmedov, B. Shadow of rotating Hořava-Lifshitz black hole. Astrophys Space Sci 348, 179–188 (2013). https://doi.org/10.1007/s10509-013-1548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-013-1548-5

Keywords

Navigation