Skip to main content
Log in

Fatty acid composition of five Algerian bisexual and parthenogenetic strains of Artemia (Anostraca, Crustacea) and their antimicrobial activity

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The brine shrimp Artemia remains among the most important food used in fish and crustacean larviculture, and the study of its cysts’ nutritional quality is of great importance for products selection. Fatty acids (FAs) from decapsulated cysts of two bisexual (A. salina) and three parthenogenetic strains (A. parthenogenetica) from Algeria have been analyzed by gas chromatography. The aim was, first, to check the suitability of these strains as food for aquaculture and, second, to evaluate the FAs’ efficiency in inhibition of some of the fish pathogen’s activities. Percentages of total lipids were between 7.78 and 24.55% for the parthenogenetic strains of Bethioua and Sidi Bouziane salterns, respectively. Twenty-three FAs have been detected, and a high value of eicosapentaenoic (EPA; 20:5n-3) was observed in the parthenogenetic strain of Sidi Bouziane with 16.25 ± 0.08% (39.89 mg g−1 dry weight). The highest value of α-linolenic (ALA; 18:3n-3) was observed in A. salina from Chott Marouane with 22.28 ± 0.16%, (30.72 mg g−1 dry weight). The results of the antimicrobial screening assay of FA extracts showed their inhibitory activity against six fish pathogens. In comparison with ampicillin (Amp) and kanamycin antibiotics, all the studied strains of Artemia, except Bethioua, had better antimicrobial effect of their FAs against Vibrio anguillarum (gram-negative) than Amp. Streptococcus agalactiae (gram-positive) was the most resistant against Artemia’s FAs. Decapsulated cysts with the highest proportions of PUFAs and rich in ALA and linoleic were the most effective against the bacterial growth. Regarding the FAs’ composition and their antibacterial properties, Algerian strains of Artemia are good candidates for use as food in larviculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amarouayache M, Kara MH (2015) Quality evaluation of a new strain of Artemia from Sebkha Ez-Zemoul, Algeria: biometry, hatching and fatty acid composition. Vie et Milieu - Life and Environment 65(4):1–7

    Google Scholar 

  • Asan-Ozusaglam M, Cakmak YS, Kaya M (2013) The biotechnological potential of Artemia salina fatty acids. J Pure Appl Microbiol 7(3):1567–1575

    Google Scholar 

  • Bengtson DA, Leger P, Sorgeloos P (1991) Use of Artemia as a food source for aquaculture. In: Browne RA, Sorgeloos P, Trotman CNA (eds) Artemia biology. CRC Press, Inc., Boca Raton, pp 255–285

    Google Scholar 

  • Ben Naceur H, Ben Redjeb Jenhani A, Romdhane MS (2011) Preliminary characteristics (biometry sexual dimorphism and fatty acid profile) of the brine shrimps Artemia salina (L., 1758) from Sabkhet Boujmal, Tunisia. Int J of Artemia Biol 1:29–40

    Google Scholar 

  • Camargo WN, Duran GC, Rada OC et al (2005) Determination of biological and physicochemical parameters of Artemia franciscana strains in hypersaline environments for aquaculture in the Colombian Caribbean. Sal Syst 1:9. doi:10.1186/1746-1448-1-19

    Article  Google Scholar 

  • Chandrasekaran M, Venkatesalu V (2004) Antibacterial and antifungal activity of Syzygium jambolanum seeds. J Ethnopharmacol 91:105–108

    Article  CAS  PubMed  Google Scholar 

  • Conceiçao LEC, Yufera M, Makridis P et al (2010) Live feeds for early stages of fish rearing. Aquac Res 41(5):613–640

    Article  Google Scholar 

  • Copman LA, Parrish CC, Brown JA et al (2002) Effect of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210:285–304

    Article  Google Scholar 

  • Das UN (1985) Antibiotic-like action of essential fatty acids. Can Med Assoc J 132:1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P et al (2009) Short-chain fatty acids and poly-beta-hydroxyallanoates: (new) biocontrol agents for a sustainable animal productions. Biotechnol Adv 27(6):680–685. doi:10.1016/j:biotechadv.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternative to antibiotics for the control of bacterial disease in aquaculture. Current Opinion in Microbiology. In: Top E, Wilson, D (eds) Ecology and industrial microbiology. 14: 251–258

  • Dendrinos P, Thorpe JP (1987) Experiments on the artificial regulation of the amino acid and fatty acid contents of food organisms to meet the assessed nutritional requirements of larval, post-larval and juvenile Dover sole (Solea solea L.) Aquaculture 61:121–154

    Article  CAS  Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6):1629–1642

    Article  CAS  PubMed  Google Scholar 

  • De Schryver P, Defoirdt T, Sorgeloos P (2014) Early mortality syndrome outbreaks: a microbial management issue in shrimp farming. PLoS Pathog 10(4):e1003919. doi:10.1371/journal.ppat.1003919

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhont J, Sorgeloos P (2002) Applications of Artemia. In: Abatzopoulos TJ, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 251–277

    Chapter  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Frans I, Michiels CW, Bossier P et al (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34:643–661

    Article  CAS  PubMed  Google Scholar 

  • Gagneur J, Kara MH (2001) Limnology in Algeria. In: Wetzel RG, Gopal B (eds), Limnology in developing countries, 3. Intern Assoc Limnol: 1–34

  • Gajardo GM, Beardmore JA (2012) The brine shrimp Artemia: adapted to critical life conditions. Front Physiol 3:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Ortega A, Verreth J, Coutteau P et al (1998) Biochemical and enzymatic characterization of decapsulated cysts and nauplii of the brine shrimp Artemia at different developmental stages. Aquaculture 161:501–514

    Article  CAS  Google Scholar 

  • Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult 1:71–124

    Article  Google Scholar 

  • Kara MH, Amarouayache M (2012) Review of the biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in Algeria. Int J Artemia Biology 2(1):40–50

    Google Scholar 

  • Kara MH, Bengraine KA, Derbal F et al (2004) Quality evaluation of a new strain of Artemia from Chott Marouane (Northeast Algeria). Aquaculture 235:361–369

    Article  Google Scholar 

  • Kelava T, Cavar I, Culo F (2011) Biological actions of drug solvents. Period Biol 113(3):311–320

    Google Scholar 

  • Kouba A, Hamackova J, Buric M et al (2011) Use of three forms of decapsulated Artemia cysts as food for juvenile noble crayfish (Astacus astacus). Czech J Anim Sci 56(3):114–118

    Google Scholar 

  • Lavens P, Tackaert W, Sorgeloos P (1986) International study on Artemia. XLI. The influence of culture conditions and specific diapause deactivation methods on the hatchability of Artemia cysts, produced in a standard culture system. Mar Ecol Prog Ser 31:197–203

    Article  Google Scholar 

  • Lavens P, Léger P, Sorgeloos P (1989) Manipulation of the fatty acid profile in Artemia offspring produced in intensive culture systems. Aquaculture—a biotechnology in progress, pp 731–739

  • Léger P, Bengtson DA, Simpson KL et al (1986) The use and nutritional value of Artemia as food source. Oceanogr Mar Biol Ann Rev 24:521–623

    Google Scholar 

  • Léger P, Naessens-Foucquaert E, Sorgeloos P (1987) International study on Artemia. XXXV. Techniques to manipulate the fatty acid profile in Artemia nauplii, and the effect on its nutritional effectiveness for marine crustacean Mysidopsis bahia (M.) In: Sorgeloos P, Bengtson DA, Declair W, Jaspers E (eds) Artemia research and its applications, 3. Universa Press, Wetteren, pp 409–424

    Google Scholar 

  • Leung TLF, Bates AE (2013) More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J Appl Ecol 50(1):215–222

    Article  Google Scholar 

  • Litvinenko L, Litvinenko A, Boyko E et al (2014) Artemia in the Salt Lakes of Russia: the productivity of populations, the reserves of the cysts and the fisheries. Act Geol Sin (English Edition) 88(supp. 1):87–88

    Article  Google Scholar 

  • Monroig Ó, Navarro JC, Tocher DR (2011) Long-chain polyunsaturated fatty acids in fish: recent advances on desaturases and elongases involved in their biosynthesis. Universidad Autónoma de Nuevo León, Monterrey, pp 257–283

    Google Scholar 

  • Moraiti-Ioannidou M, Castritsi-Catharios J, Miliou H et al (2007) Fatty acid composition and biometry of five Greek Artemia populations suitable for aquaculture purposes. Aquac Res 38:1664–1672

    Article  CAS  Google Scholar 

  • Murray PR, Baron EJ, Pfaller MA et al (1995) Manual of clinical microbiology, 6th edn. ASM Press, Washington, pp 457–464

    Google Scholar 

  • Navarro JC, Amat F, Sargent JR (1992) Lipid composition of cysts of brine shrimp Artemia sp from Spanish population. J Exp Mar Biol Ecol 155:123–131

    Article  CAS  Google Scholar 

  • Navarro JC, McEvoy L, Henderson R et al (1999) Lipid conversions during Artemia enrichment. Aquaculture 174:155–166

    Article  CAS  Google Scholar 

  • Nikaido H (1998) Antibioticresistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 27(Suppl 1):532–541

    Google Scholar 

  • Nougué O, Flaven E, Jabbour-Zahab R et al (2015) Characterization of nine new polymorphic microsatellite markers in Artemia parthenogenetica. Biochem Sys Ecol 58:59–63

    Article  Google Scholar 

  • Ouattara B, Simard RE, Holley RA et al (1997) Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 37:155–162

    Article  CAS  PubMed  Google Scholar 

  • Paquot C (1979) IUPAC standard methods for analysis of oils, fats and derivatives, 6th edn. Pergamon Press, Oxford

    Google Scholar 

  • Piggott GM, Tucker BW (1990) Seafood: effects of technology on nutrition. Marcel Dekker, Inc., New York, pp 221–228

    Google Scholar 

  • Romero J, Feijoo CG, Navarrete P (2012) Antibiotics in aquaculture—use, abuse and alternatives. Health and environment in aquaculture. ISBN: 953–978

  • Ruiz O, Amat F, Navarro JC (2008) A comparative study of the fatty acid profile of Artemia franciscana and A. persimilis cultured at mesocosm scale. J Exp Mar Biol Ecol 354:9–16. doi:10.1016/j.jembe.2007.09.015

    Article  Google Scholar 

  • Salem N Jr, Litman B, Kim HY et al (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36(9):945–959

    Article  CAS  PubMed  Google Scholar 

  • Sargent JR, Bell MV, Tocher DR (1993) Docosahexanoic acid and the development of brain and retina in marine fish. In: Drevon CA, Baksaas I, Krokan HE (eds) Omega-3 fatty acids: metabolism and biological effects. Birkhaeuser Verlag, Basel, pp 139–149

    Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 181–257

    Google Scholar 

  • Sorgeloos P, Lavens P, Leger P et al (1986) Manual for the culture and use of brine shrimp Artemia in aquaculture. Artemia Reference Center, State of Univ. Ghent, Belgium: 91–95, 319 p

  • Sorgeloos P, Dhert P, Candreva P (2001) Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 20:147–159

    Article  Google Scholar 

  • Tizol-Correa R, Carreon-Palau L, Arredondo-Vega BU et al (2006) Fatty acid composition of Artemia (Branchiopoda: Anostraca) cysts from tropical salterns of southern Mexico and Cuba. J Crustacean Biol 26(4):503–509

    Article  Google Scholar 

  • Tocher DR (2003) Metabolism function of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184

    Article  CAS  Google Scholar 

  • Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732

    Article  CAS  Google Scholar 

  • Toranzo AE, Magarinos B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61

    Article  Google Scholar 

  • Torrentera L, Dodson SI (2004) Ecology of the brine shrimp Artemia in the Yucatan, Mexico, salterns. J Plankton Res 26:617–624

    Article  Google Scholar 

  • Utah DNR, DFFSL (2011) Great Salt Lake Comprehensive Management Plan Revision, May 2011

  • Van Ballaer E, Versichele D, Vanhaecke P et al (1987) Characterization of Artemia from different localities in Tunisia with regard to their use in local aquaculture. In: Sorgeloos P, Bengtson DH, Declair W, Jaspers E (eds) Artemia research and its applications. I. Universa Press, Wetteren, pp 199–209

    Google Scholar 

  • Vanhaecke P, Lavens P, Sorgeloos P (1983) International study on Artemia. XVII. Energy consumption in cysts and early larval stages of various geographical strains of Artemia. Ann Soc R Zool Belg 113(2):155–164

    Google Scholar 

  • Van Stappen G (2002) Zoogeography. In: Abatzopoulos TJ, Beardmore JA, Cleg JS et al (eds) Artemia: basic and applied biology. Kluwer Academic Publisher, Dordrecht, pp 171–224

  • Van Stappen G, Sui L, Xin N et al (2003) Characterization of high-altitude Artemia populations from the Qinghai-Tibet Plateau, PR China. Hydrobiologia 500:179–192

    Article  Google Scholar 

  • Vendrell DJ, Balcázar JL, Ruiz-Zarzuela I et al (2006) Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 29(4):177–198

    Article  PubMed  Google Scholar 

  • Vikas PA, Chakraborty K, Sajeshkumar NK et al (2012) Unraveling the effects of live microalgal enrichment on Artemia nauplii. Indian J Fish 59(4):111–121

    Google Scholar 

  • Watanabe T, Arakawa T, Kitajima C et al (1978) Nutritional quality of living feeds from the viewpoint of essential fatty acids for fish. Bull Jap Soc Sci Fish 44:1223–1227

    Article  CAS  Google Scholar 

  • Zheng CJ, Yoo JS, Lee TG et al (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579:5157–5162. doi:10.1016/J.febslet.2005.08.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been financially supported by the Algerian Ministry for Higher Education and Scientific Research within the framework of the National Funds of Research (NFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounia Amarouayache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarouayache, M., Cakmak, Y.S., Asan-Ozusaglam, M. et al. Fatty acid composition of five Algerian bisexual and parthenogenetic strains of Artemia (Anostraca, Crustacea) and their antimicrobial activity. Aquacult Int 25, 1555–1568 (2017). https://doi.org/10.1007/s10499-017-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0136-z

Keywords

Navigation