Skip to main content

Advertisement

Log in

Effects of dietary arginine levels on growth, feed conversion, protein productive value and carcass composition of stinging catfish fingerling Heteropneustes fossilis (Bloch)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

A 12-week feeding trial was conducted to evaluate the effects of varying levels of dietary arginine on growth, feed conversion, protein productive value and carcass composition of fingerling Heteropneustes fossilis (10.11 ± 0.14 cm; 5.87 ± 0.07 g). Casein and gelatin-based isonitrogenous (38% crude protein) and isocaloric (14.72 kJ g−1 digestible energy) amino acid test diets with varying levels of l-arginine (1.00, 1.25, 1.50, 1.75, 2.00 and 2.25 g 100 g−1 of dry diet) were fed to randomly assigned triplicate groups of fish to apparent satiation twice daily at two feeding schedules (08.00 and 17.30 h). Thermal growth coefficient (TGC; 0.86), feed conversion ratio (FCR; 1.97) and protein productive value (PPV; 0.25) were best attained by the group fed diet containing 1.75 g arginine 100 g−1 of dry diet (D4). Carcass protein content also peaked at the above level of dietary arginine whereas carcass lipid showed consistent drop with the increase in dietary arginine level up to 1.75 g 100 g−1 of dry diet. Second-degree polynomial regression analysis at 95% maximum and minimum response of thermal growth coefficient, feed conversion, protein productive value, carcass protein and lipid productive value against varying levels of dietary arginine yielded that dietary arginine in the range of 1.51–1.66 g 100 g−1 of dry diet, corresponding to 3.97–4.37 g 100 g−1 protein is adequate to optimize growth, feed conversion, protein productive value and improve carcass quality in fingerling H. fossilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CP:

Crude protein

DE:

Digestible energy

LWG:

Live weight gain

TGC:

Thermal growth coefficient

FCR:

Feed conversion ratio

PPV:

Protein productive value

LPV:

Lipid productive value

HSI:

Hepatosomatic index

VSI:

Viscerosomatic

CF:

Condition factor

EAAs:

Essential amino acid

NEAAs:

Nonessential amino acid

SR:

Survival rate

References

  • Abidi SF, Khan MA (2007) Dietary leucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquacult Res 38:478–486

    Article  CAS  Google Scholar 

  • Akiyama T, Arai S (1993) Amino acid requirements of chum salmon fry and supplementation of amino acids to diet. In: Collie MR, McVey JP (eds) Proceedings of the Twentieth US– Japan Symposium on Aquaculture Nutrition. UJNR Department of Commerce, Newport, OR, USA, pp 35–48

    Google Scholar 

  • Alam MS, Teshima S, Yaniharto D, Koshio S, Ishikawa M (2002) Influence of different dietary amino acid patterns on growth and body composition of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 210:359–369

    Article  CAS  Google Scholar 

  • AOAC (1995) Official methods of analysis of the association of official analytical chemists, 16th edn. Association of Official Analytical Chemist, Arlington, Virginia

    Google Scholar 

  • APHA (1992) Standard methods for the examination of water and waste water, 18th edn. American Public Health Association, Washington DC 1268 pp

    Google Scholar 

  • Balch MD, James F, Balch CNC, Phyllis A (1997) Prescription for nutritional healing, 2nd edn. Avery Publishing, New York, pp 35–36

    Google Scholar 

  • Bhatt VS (1968) Studies on the biology of some fresh water fishes. Part –Vll. H. fossilis (Bloch). Indian J Fish 15:99–115

    Google Scholar 

  • Borlongan IG (1991) Arginine and threonine requirements of milkfish (Chanos chanos Forsskal) juveniles. Aquaculture 93:313–322

    Article  CAS  Google Scholar 

  • Borlongan IG, Coloso RM (1993) Requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids. J Nutr 123:125–132

    PubMed  CAS  Google Scholar 

  • Braverman MD (1997) The healing nutrient within New Canaan. Keats Publishing, Inc., CT, pp 18–23

    Google Scholar 

  • Buentello JA, Gatlin DM (2000) The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture 188:311–321

    Article  CAS  Google Scholar 

  • Cho CY, Kaushik S, Woodward B (1992) Dietary arginine requirement of young rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 102:211–216

    Article  CAS  Google Scholar 

  • Clarke DCEUAEJ, Wiseman J (2000) Developments in plant breeding for improved nutritional quality of soya beans I. Protein and amino acid content. J Agric Sci 134:111–124

    Article  CAS  Google Scholar 

  • Cowey CB (1992) Nutrition: Estimating requirements of rainbow trout. Aquaculture 100:177–189

    Article  Google Scholar 

  • Fagbenro OA, Nwanna LC, Adebayo OT (1999) Dietary arginine requirement of the African catfish, Clarias gariepinus. J Applied Aquacult 9:59–64

    Article  Google Scholar 

  • Farhat, Khan MA (2011) Dietary l-lysine requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch) for optimizing growth, feed conversion, protein and lysine deposition. Aquacult Res. doi:10.1111/j.1365-2109.2011.03054.x

    Google Scholar 

  • Fu BM, Adamson RH, Curry FR (2005) Determination of microvessel permeability and tissue diffusion coefficient of solutes by laser scanning confocal microscopy. J Biomech Eng 127:270–278

    Article  PubMed  Google Scholar 

  • Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499

    Article  CAS  Google Scholar 

  • Gaylord TG, Barrows FT (2009) Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture 287:180–184

    Article  CAS  Google Scholar 

  • Griffin ME, Wilson KA, Brown PB (1994) Dietary arginine requirement of juvenile hybrid striped bass. J Nutr 124:888–893

    PubMed  CAS  Google Scholar 

  • Halver JE (2002) The vitamins. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, CA, pp 61–141

    Google Scholar 

  • Hardy RW, Barrows FT (2002) Diet formulation and manufacture. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 506–601

    Google Scholar 

  • Harper AE, Benvenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50:428–543

    PubMed  CAS  Google Scholar 

  • Hart SD, Brown BJ, Gould NL, Robar ML, Witt EM, Brown PB (2010) Predicting the optimal dietary essential amino acid profile for growth of juvenile yellow perch with whole body amino acid concentrations. Aqaucult Nutr 16:248–253

    Article  CAS  Google Scholar 

  • Jackson A, Capper J (1982) Investigation into the requirements of the tilapia (Sarotherodon mossambicus) for dietary methionine, lysine and arginine in semi-synthetic diets. Aquaculture 29:289–297

    Article  CAS  Google Scholar 

  • Jauncey K (1982) The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 27:43–54

    Article  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in energy-substrate metabolism. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Kaushik SJ, Luquet P (1980) Influence of bacterial protein incorporation and of sulphur amino acid supplementation to such diets on growth of rainbow trout, Salmo gairdnerii Richardson. Aquaculture 19:163–175

    Article  CAS  Google Scholar 

  • Khan MA, Abidi SF (2011a) Dietary arginine requirement of Heteropneustes fossilis fry (Bloch) based on growth, nutrient retention and hematological parameters. Aquacult Nutr 17:418–428

    Article  CAS  Google Scholar 

  • Khan MA, Abidi SF (2011b) Effect of dietary l-lysine levels on growth, feed conversion, lysine retention efficiency and haematological indices of Heteropneustes fossilis (Bloch) fry. Aquacult Nutr 17:e657–e667

    Article  Google Scholar 

  • Kim JD, Kaushik SJ (1992) Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 106:161–169

    Article  Google Scholar 

  • Klein RG, Halver JE (1970) Nutrition of salmonid species: arginine and histidine requirements of chinook and coho salmon. J Nutr 100:1105–1110

    PubMed  CAS  Google Scholar 

  • Lall SP, Kaushik SJ, Le Bail PY, Keith R, Anderson JS, Plisetskaya E (1994) Quantitative arginine requirement of Atlantic salmon, Salmo salar reared in sea water. Aquaculture 124:13–25

    Article  CAS  Google Scholar 

  • Li P, Mai K, Trushenski J, Wu G (2009) New development in fish amino acid nutrition: towards functional and environmental oriented aquafeeds. Amino acid 37:43–53

    Article  Google Scholar 

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Lucotti P, Setola E, Monti LD, Gallucio E, Costa S, Sandoli EP, Rabaiotti G, Gatti R, Piatti P (2006) Beneficial effects of oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 29:E906–E912

    Article  Google Scholar 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • Montanez E, Piwko-Czuchra A, Bauer M, Li S, Yurchenco P, Fassler R (2007) Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol 426:239–289

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Gurrea DP, Coloso RM, Borlongan IG, Serrano AE (2001) Lysine and arginine requirement of juvenile Asian sea bass (Lates calcarifer). J Appl Ichthyol 17:49–53

    Article  CAS  Google Scholar 

  • Nikolic M, Nikolic N, Liang Y, Kirkby EA, Romheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503

    Article  PubMed  CAS  Google Scholar 

  • Nose T (1979) Summary report on the requirement of essential amino acids for carp. In: Halver JE, Tiews K (eds) Finfish Nutrition and Fish feed Technology. Berlin, Germany, Heenemann, pp 145–156

    Google Scholar 

  • NRC (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington, D.C.

    Google Scholar 

  • Petrovic C, Georges E, Woodfield N (2008) Important Bird Areas In British Virgin Islands. In: Wege D, Anadón V (eds) Important Bird Areas In The Caribbean: Key Sites For Conservation. Birdlife International (Birdlife Conservation Series 15, Cambridge, pp 103–108

    Google Scholar 

  • Ramaswami LS, Sundararaj BI (1956) Induced spawning in the Indian Catfish H fossilis with pituitary injection. Science 123:1080

    Article  Google Scholar 

  • Ravi J, Devaraj KV (1991) Quantitative essential amino acid requirements for growth of catla, Catla catla (Hamilton). Aquaculture 96:281–291

    Article  CAS  Google Scholar 

  • Robinson EH, Wilson RP, Poe WE (1981) Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish. J Nutr 111:46–52

    PubMed  CAS  Google Scholar 

  • Rodehutscord M, Pfeffer E (1995) Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout (Oncorhynchus mykiss). Water Sci Tech 31:143–147

    CAS  Google Scholar 

  • Rodehutscord M, Becker A, Pack M, Pack M, Pfeffer M (1997) Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. J Nutr 126:1166–1175

    Google Scholar 

  • Santiago CB, Lovell RT (1988) Amino acid requirements for growth of Nile tilapia. J Nutr 118:1540–1546

    PubMed  CAS  Google Scholar 

  • Shearer KD (2000) Experimental design, statistical analysis and modeling of dietary nutrient requirement studies for fish: a critical review. Aquacult Nutr 6:91–102

    Article  CAS  Google Scholar 

  • Siddiqui TQ, Khan MA (2009) Effects of dietary protein levels on growth, feed utilization, protein retention efficiency and body composition of young Heteropneustes fossilis (Bloch). Fish Physiol Biochem 35:479–488

    Article  PubMed  CAS  Google Scholar 

  • Small BC, Soares JE Jr (1998) Estimating the quantitative essential amino acid requirements of striped bass Morone saxatilis, using fillets A/E ratio. Aquacult Nutr 4:225–232

    Article  CAS  Google Scholar 

  • Snedecor GW, Cochran WG (1968) Statistical methods. Iowa State University Press, Iowa

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Southern LL, Baker DH (1982) Performance and concentration of amino acids in plasma and urine of young pigs fed diets with excesses of either arginine or lysine. J Anim Sci 55:857

    PubMed  CAS  Google Scholar 

  • Thakur NK, Pal RN, Khan HA (1974) Embryonic and larval development of Heteropneustes fossilis (Bloch). J Inland Fish Soc India 6:33–44

    Google Scholar 

  • Tibaldi E, Tulli F (1999) Dietary threonine requirement of juvenile European sea bass (Dicentrarchus labrax). Aquaculture 175:155–166

    Article  CAS  Google Scholar 

  • Tibaldi E, Tulli F, Lanari D (1994) Arginine requirement and effect of different dietary arginine and lysine levels for fingerlings sea bass (Dicentrarchus labrax). Aquaculture 127:207–218

    Article  CAS  Google Scholar 

  • Tukey JW (1953) In the problem of multiple compositions. Princeton University, Princeton, NJ

    Google Scholar 

  • Tulli F, Vachot C, Tibaldi E, Fournier V, Kaushik SJ (2007) Contribution of dietary arginine to nitrogen utilisation and excretion in juvenile sea bass (Dicentrarchus labrax) fed diets differing in protein source. Comp Biochem Physiol 147:179–188

    Article  CAS  Google Scholar 

  • Twibell RG, Brown PB (1997) Dietary arginine requirement of juvenile yellow perch. J Nutr 127:1838–1841

    PubMed  CAS  Google Scholar 

  • Wilson RP (1989) Amino acids and proteins. In: Halver JE (ed) Fish Nutrition, 2nd edn. Academic Press, New York, pp 111–151

    Google Scholar 

  • Wilson RP (2002) Amino acid and proteins. In: Halver JE, Hardy RW (eds) Fish Nutrition, 3rd edn. Academic Press, San Diego, CA, pp 144–175

    Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles of the arginine family amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE (2008) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Liou C, Liu F (2002) Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch Bidyanus bidyanus. Aquaculture 213:363–372

    Article  CAS  Google Scholar 

  • Zhou F, Shao J, Xu R, Ma J, Xu Z (2010) Quantitative l-lysine requirement of juvenile black sea bream (Sparus macrocephalus). Aquacult Nutr 16:194–204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Chairman, Department of Zoology, Aligarh Muslim University, Aligarh, India for providing necessary laboratory facilities and also to Prof. John E. Halver for supporting the Fish Nutrition Research Programme at this laboratory. We also gratefully acknowledge the financial assistance of university research fellowship awarded to one of us (Farhat) and generous funding received under DST-FIST Programme, New Delhi, in the priority area of Fish Nutrition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhat, Khan, M.A. Effects of dietary arginine levels on growth, feed conversion, protein productive value and carcass composition of stinging catfish fingerling Heteropneustes fossilis (Bloch). Aquacult Int 20, 935–950 (2012). https://doi.org/10.1007/s10499-012-9519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-012-9519-3

Keywords

Navigation