Skip to main content
Log in

Myeloma extracellular vesicle-derived RAGE increases inflammatory responses and myotube atrophy in multiple myeloma through activation of the TLR4/NF-κB p65 pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs’ effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michels TC, Petersen KE (2017) Multiple myeloma: diagnosis and treatment. Am Fam Physician 95:373–383

    PubMed  Google Scholar 

  2. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV et al (2014) International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15:e538-548. https://doi.org/10.1016/S1470-2045(14)70442-5

    Article  PubMed  Google Scholar 

  3. Papadopoulou SK (2020) Sarcopenia: a contemporary health problem among older adult populations. Nutrients. https://doi.org/10.3390/nu12051293

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP et al (2022) Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13:86–99. https://doi.org/10.1002/jcsm.12783

    Article  PubMed  Google Scholar 

  5. Carneiro IP, Mazurak VC, Prado CM (2016) Clinical implications of sarcopenic obesity in Cancer. Curr Oncol Rep 18:62. https://doi.org/10.1007/s11912-016-0546-5

    Article  PubMed  Google Scholar 

  6. Nandakumar B, Baffour F, Abdallah NH, Kumar SK, Dispenzieri A, Buadi FK et al (2023) Sarcopenia identified by computed tomography imaging using a deep learning-based segmentation approach impacts survival in patients with newly diagnosed Multiple Myeloma. Cancer 129:385–392. https://doi.org/10.1002/cncr.34545

    Article  CAS  PubMed  Google Scholar 

  7. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. https://doi.org/10.3390/biom9110735

    Article  PubMed  PubMed Central  Google Scholar 

  8. Powers SK, Smuder AJ, Judge AR (2012) Oxidative stress and disuse muscle atrophy: cause or consequence? Curr Opin Clin Nutr Metab Care 15:240–245. https://doi.org/10.1097/MCO.0b013e328352b4c2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol. https://doi.org/10.1007/s10875-012-9847-0

    Article  PubMed  Google Scholar 

  10. Tsukamoto T, Tsujii M, Odake K, Iino T, Nakamura T, Matsumine A et al (2021) Febuxostat reduces muscle wasting in tumor-bearing mice with LM8 osteosarcoma cells via inhibition of reactive oxygen species generation. Free Radic Res 55:810–820. https://doi.org/10.1080/10715762.2021.1947502

    Article  CAS  PubMed  Google Scholar 

  11. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in Cancer: cell-to-cell mediators of Metastasis. Cancer Cell 30:836–848. https://doi.org/10.1016/j.ccell.2016.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mu X, Agarwal R, March D, Rothenberg A, Voigt C, Tebbets J et al (2016) Notch signaling mediates skeletal muscle atrophy in cancer cachexia caused by osteosarcoma. Sarcoma. https://doi.org/10.1155/2016/3758162

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lopes R, Caetano J, Barahona F, Pestana C, Ferreira BV, Lourenco D et al (2022) Multiple myeloma-derived extracellular vesicles modulate the bone marrow Immune Microenvironment. Front Immunol. https://doi.org/10.3389/fimmu.2022.909880

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Luca L, Laurenzana I, Trino S, Lamorte D, Caivano A, Musto P (2019) An update on extracellular vesicles in Multiple Myeloma: a focus on their role in cell-to-cell cross-talk and as potential liquid biopsy biomarkers. Expert Rev Mol Diagn 19:249–258. https://doi.org/10.1080/14737159.2019.1583103

    Article  CAS  PubMed  Google Scholar 

  15. Reale A, Khong T, Mithraprabhu S, Spencer A (2021) Translational potential of RNA derived from Extracellular vesicles in Multiple Myeloma. Front Oncol. https://doi.org/10.3389/fonc.2021.718502

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muthyalaiah YS, Jonnalagadda B, John CM, Arockiasamy S (2021) Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 38:717–734. https://doi.org/10.1007/s10719-021-10031-x

    Article  CAS  PubMed  Google Scholar 

  17. Chiappalupi S, Sorci G, Vukasinovic A, Salvadori L, Sagheddu R, Coletti D et al (2020) Targeting RAGE prevents muscle wasting and prolongs survival in cancer Cachexia. J Cachexia Sarcopenia Muscle 11:929–946. https://doi.org/10.1002/jcsm.12561

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allegra A, Musolino C, Pace E, Innao V, Di Salvo E, Ferraro M et al (2019) Evaluation of the AGE/sRAGE axis in patients with multiple myeloma. Antioxidants. https://doi.org/10.3390/antiox8030055

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aluganti Narasimhulu C, Singla DK (2021) Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. J Cachexia Sarcopenia Muscle 12:403–420. https://doi.org/10.1002/jcsm.12662

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ducharme JB, McKenna ZJ, Deyhle MR (2022) Exercise mitigates the toll of muscle atrophy: a narrative review of the effects of exercise on toll-like receptor-4 in leukocytes and skeletal muscle. Am J Physiol Cell Physiol 322:C581–C589. https://doi.org/10.1152/ajpcell.00005.2022

    Article  CAS  PubMed  Google Scholar 

  21. Langen RC, Haegens A, Vernooy JH, Wouters EF, de Winther MP, Carlsen H et al (2012) NF-kappaB activation is required for the transition of pulmonary inflammation to muscle atrophy. Am J Respir Cell Mol Biol 47:288–297. https://doi.org/10.1165/rcmb.2011-0119OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hahn A, Kny M, Pablo-Tortola C, Todiras M, Willenbrock M, Schmidt S et al (2020) Serum amyloid A1 mediates myotube atrophy via toll-like receptors. J Cachexia Sarcopenia Muscle 11:103–119. https://doi.org/10.1002/jcsm.12491

    Article  PubMed  Google Scholar 

  23. Gao H, Wang J (2016) Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-kappaB signaling pathway. Mol Med Rep 13:1827–1832. https://doi.org/10.3892/mmr.2015.4703

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Shao L, Wu C, Lu H, Xu R (2015) Hypericin-mediated photodynamic therapy induces apoptosis of myoloma SP2/0 cells depended on caspase activity in vitro. Cancer Cell Int 15:58. https://doi.org/10.1186/s12935-015-0193-1

    Article  PubMed  Google Scholar 

  25. Pin F, Beltra M, Garcia-Castillo L, Pardini B, Birolo G, Matullo G et al (2022) Extracellular vesicles derived from tumour cells as a trigger of energy crisis in the skeletal muscle. J Cachexia Sarcopenia Muscle 13:481–494. https://doi.org/10.1002/jcsm.12844

    Article  PubMed  Google Scholar 

  26. Catalano M, O’Driscoll L (2020) Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 9:1703244. https://doi.org/10.1080/20013078.2019.1703244

    Article  CAS  PubMed  Google Scholar 

  27. Ke Y, Fan X, Hao R, Dong L, Xue M, Tan L et al (2021) Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Muller cell retrodifferentiation via HSP90. Stem Cell Res Ther 12:21. https://doi.org/10.1186/s13287-020-02034-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miao C, Zhang W, Feng L, Gu X, Shen Q, Lu S et al (2021) Cancer-derived exosome miRNAs induce skeletal muscle wasting by bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids 24:923–938. https://doi.org/10.1016/j.omtn.2021.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zarfati M, Avivi I, Brenner B, Katz T, Aharon A (2019) Extracellular vesicles of Multiple Myeloma cells utilize the proteasome inhibitor mechanism to moderate endothelial angiogenesis. Angiogenesis 22:185–196. https://doi.org/10.1007/s10456-018-9649-y

    Article  PubMed  Google Scholar 

  30. Wu WY, Dong JJ, Huang XC, Chen ZJ, Chen XL, Dong QT et al (2021) AWGS2019 vs EWGSOP2 for diagnosing Sarcopenia to predict long-term prognosis in Chinese patients with gastric cancer after radical gastrectomy. World J Clin Cases 9:4668–4680. https://doi.org/10.12998/wjcc.v9.i18.4668

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW et al (2021) Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-kappaB/TNF-alpha and regulating protein synthesis/degradation pathway. Br J Pharmacol 178:2998–3016. https://doi.org/10.1111/bph.15472

    Article  CAS  PubMed  Google Scholar 

  32. Shimura M, Mizuma M, Motoi F, Kusaka A, Aoki S, Iseki M et al (2023) Negative prognostic impact of Sarcopenia before and after neoadjuvant chemotherapy for Pancreatic cancer. Pancreatology 23:65–72. https://doi.org/10.1016/j.pan.2022.11.010

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Lei Q, Wang H, Xu C, Liu T, Kong F et al (2019) Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate Myeloma bone Disease. Theranostics 9:196–209. https://doi.org/10.7150/thno.27550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou L, Zhang T, Shao W, Lu R, Wang L, Liu H et al (2021) Amiloride ameliorates muscle wasting in cancer Cachexia through inhibiting tumor-derived exosome release. Skelet Muscle 11:17. https://doi.org/10.1186/s13395-021-00274-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eshima H, Shahtout JL, Siripoksup P, Pearson MJ, Mahmassani ZS, Ferrara PJ et al (2023) Lipid hydroperoxides promote Sarcopenia through carbonyl stress. Elife. https://doi.org/10.7554/eLife.85289

    Article  PubMed  PubMed Central  Google Scholar 

  36. VanderVeen BN, Fix DK, Carson JA (2017) Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: a role for inflammation. Oxid Med Cell Longev 2017:3292087. https://doi.org/10.1155/2017/3292087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsubara T, Urata M, Nakajima T, Fukuzaki M, Masuda R, Yoshimoto Y et al (2018) Geranylgeraniol-induced myogenic differentiation of C2C12 cells. In Vivo 32:1427–1431. https://doi.org/10.21873/invivo.11395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo J, Jiang G, Chen J, Zhang M, Xiang K, Wang C et al (2023) Tumor tissue derived extracellular vesicles promote diabetic wound healing. J Diabetes Complicat. https://doi.org/10.1016/j.jdiacomp.2023.108435

    Article  Google Scholar 

  39. Hu W, Ru Z, Zhou Y, Xiao W, Sun R, Zhang S et al (2019) Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 1864:1091–1102. https://doi.org/10.1016/j.bbalip.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  40. Laurenzana I, Trino S, Lamorte D, De Stradis A, Santodirocco M, Sgambato A et al (2021) Multiple myeloma-derived extracellular vesicles impair normal hematopoiesis by acting on hematopoietic stem and progenitor cells. Front Med. https://doi.org/10.3389/fmed.2021.793040

    Article  Google Scholar 

  41. Colombo M, Giannandrea D, Lesma E, Basile A, Chiaramonte R (2019) Extracellular vesicles enhance Multiple Myeloma metastatic dissemination. Int J Mol Sci. https://doi.org/10.3390/ijms20133236

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim H, Mun D, Kang JY, Lee SH, Yun N, Joung B (2021) Improved cardiac-specific delivery of RAGE siRNA within small extracellular vesicles engineered to express intense cardiac targeting peptide attenuates myocarditis. Mol Ther Nucleic Acids 24:1024–1032. https://doi.org/10.1016/j.omtn.2021.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haddad M, Perrotte M, Ben Khedher MR, Madec E, Lepage A, Fulop T et al (2021) Levels of receptor for Advanced Glycation End products and Glyoxalase-1 in the total circulating Extracellular vesicles from mild cognitive impairment and different stages of Alzheimer’s Disease patients. J Alzheimers Dis 84:227–237. https://doi.org/10.3233/JAD-210441

    Article  CAS  PubMed  Google Scholar 

  44. Lenga Ma Bonda W, Fournet M, Zhai R, Lutz J, Blondonnet R, Bourgne C et al (2022) Receptor for Advanced Glycation End-products promotes activation of alveolar macrophages through the NLRP3 Inflammasome/TXNIP Axis in Acute Lung Injury. Int J Mol Sci. https://doi.org/10.3390/ijms231911659

    Article  PubMed  PubMed Central  Google Scholar 

  45. Birben E, Sahiner UM, Kalayci CO (2023) Determination of the effects of advanced glycation end products receptor polymorphisms and its activation on structural cell responses and inflammation in asthma. Turk J Med Sci 53:160–170. https://doi.org/10.55730/1300-0144.5569

    Article  CAS  PubMed  Google Scholar 

  46. Oh S, Yang J, Park C, Son K, Byun K (2021) Dieckol attenuated glucocorticoid-Induced muscle atrophy by decreasing NLRP3 inflammasome and Pyroptosis. Int J Mol Sci 22:8057. https://doi.org/10.3390/ijms22158057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R (2018) RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 9:1213–1234. https://doi.org/10.1002/jcsm.12350

    Article  PubMed  PubMed Central  Google Scholar 

  48. He Z, Song Q, Yu Y, Liu F, Zhao J, Un W et al (2023) Protein therapy of skeletal muscle atrophy and mechanism by angiogenic factor AGGF1. J Cachexia Sarcopenia Muscle 14:978–991. https://doi.org/10.1002/jcsm.13179

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fleming V, Hu X, Weller C, Weber R, Groth C, Riester Z et al (2019) Melanoma Extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling. Cancer Res 79:4715–4728. https://doi.org/10.1158/0008-5472.CAN-19-0053

    Article  CAS  PubMed  Google Scholar 

  50. Ono Y, Maejima Y, Saito M, Sakamoto K, Horita S, Shimomura K et al (2020) TAK-242, a specific inhibitor of toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci Rep 10:694. https://doi.org/10.1038/s41598-020-57714-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YW contributed to the study concepts, study design; YW and XY contributed to the literature research; YW, XY, XS, ZX and JR contributed to the experimental studies and data acquisition; YW, MS, ML, JL and XD contributed to the data analysis and statistical analysis; YW contributed to the manuscript preparation and XD contributed to the manuscript editing and review; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinru Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yao, X., Shi, X. et al. Myeloma extracellular vesicle-derived RAGE increases inflammatory responses and myotube atrophy in multiple myeloma through activation of the TLR4/NF-κB p65 pathway. Apoptosis 29, 849–864 (2024). https://doi.org/10.1007/s10495-023-01920-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01920-7

Keywords

Navigation