Skip to main content

Advertisement

Log in

Let-7a-5p regulated by lncRNA-MEG3 promotes functional differentiation to Schwann cells from adipose derived stem cells via directly inhibiting RBPJ-mediating Notch pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Schwann cells (SCs) have important roles in supporting and repairing peripheral neurons, and thus have great potential for nerve injury treatment. Adipose tissue-derived stem cells (ADSCs) can be reliably induced to differentiate into SCs. However, the underlying molecular mechanisms are unclear. We explored the roles of MEG3/let-7a-5p/RBPJ axis in the differentiation into SCs from ADSCs. Primary ADSCs were induced to differentiate into SCs by appropriate reagents. ELISA, immunostaining, Western blotting, and qRT-PCR were employed to examine levels of SC-markers such as S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, BDNF, and NCAM and let-7 family, MEG3, RBPJ, and Notch signaling related proteins. Dual luciferase assay and RNA immunoprecipitation were performed to validate interactions of let-7a-5p/RBPJ mRNA and MEG3/let-7a-5p. Cultured ADSCs could be induced to differentiate into functional SCs. Let-7a-5p and let-7d-5p were elevated during the differentiation while MEG3 and RBPJ/Notch-signaling were suppressed. Let-7a-5p mimics promoted ADSC differentiation into SCs and up-regulated the levels of SC-related markers including S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, and NCAM, while RBPJ or MEG3 overexpression retarded the differentiation and reduced those levels. Let-7a-5p directly targeted RBPJ and MEG3 disinhibited Notch-RBPJ signaling via sponging let-7a-5p. RBPJ overexpression reversed the acceleration of let-7a-5p mimics on SC differentiation while let-7a-5p mimics blocked MEG3-mediated suppression on SC differentiation. Let-7a-5p sponged by MEG3 promotes differentiation of ADSCs into SCs via suppressing Notch signaling by targeting RBPJ. These findings shed light on mechanisms underlying the differentiation of ADSCs to SCs and provide avenues to accelerate the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

SC:

Schwann cell

NSC:

Neural stem cell

ADSC:

Adipose tissue-derived stem cell

NICD:

Notch intracellular domain

RBPJ:

Recombination signal-binding protein for immunoglobulin κ J region

BMSC:

Bone marrow mesenchymal stem cell

ncRNA:

Non-coding RNAs

miRNA:

Micro RNA

lncRNA:

Long non-coding RNA

ceRNA:

Competing endogenous RNA

MEG3:

Maternally expressed gene 3

DMEM:

Dulbecco's Modified Eagle Medium

FBS:

Fetal bovine serum

PDGF:

Platelet-derived growth factor

FFGF:

Fibroblast Growth Factor

β-NGF:

β-Nerve growth factor

BDNF:

Brain-derived neurotrophic factor

IL-6:

Interleukin 6

NCAM:

Neural cell adhesion molecule

GFAP:

Glial fibrillary acidic protein

HES1/5:

Hairy and enhancer of split 1/5

References

  1. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jessen KR, Mirsky R (2019) The success and failure of the schwann cell response to nerve injury. Front Cell Neurosci 13:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB (2015) Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci 26:121–128

    Article  CAS  PubMed  Google Scholar 

  5. Si Z, Wang X, Sun C et al (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765

    Article  CAS  PubMed  Google Scholar 

  6. Miana VV, Gonzalez EAP (2018) Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 12:822

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chu DT, Nguyen Thi Phuong T, Tien NLB et al (2019) Adipose tissue stem cells for therapy: an update on the progress of isolation, culture, storage, and clinical application. J Clin Med 8:917

    Article  CAS  PubMed Central  Google Scholar 

  8. Sun X, Zhu Y, Yin HY et al (2018) Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Res Ther 9:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie S, Lu F, Han J et al (2017) Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions. Cell Cycle 16:841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zong D, Ouyang R, Li J, Chen Y, Chen P (2016) Notch signaling in lung diseases: focus on Notch1 and Notch3. Ther Adv Respir Dis 10:468–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang J, Xiao K, Chen P (2017) NOTCH signaling in lung diseases. Exp Lung Res 43:217–228

    Article  CAS  PubMed  Google Scholar 

  12. Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722–735

    Article  CAS  PubMed  Google Scholar 

  13. Henrique D, Schweisguth F (2019) Mechanisms of Notch signaling: a simple logic deployed in time and space. Development 146:1185–1196

    Article  CAS  Google Scholar 

  14. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294

    Article  CAS  PubMed  Google Scholar 

  15. Yin J, Huang F, Yi Y, Yin L, Peng D (2016) EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway. Int J Mol Med 37:398–406

    Article  CAS  PubMed  Google Scholar 

  16. He Y, Zou L (2019) Notch-1 inhibition reduces proliferation and promotes osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Ther Med 18:1884–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Osathanon T, Subbalekha K, Sastravaha P, Pavasant P (2012) Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int 36:1161–1170

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Wang Y, Shu S, Cai J, Tang C, Dong Z (2019) Non-coding RNAs in kidney injury and repair. Am J Physiol Cell Physiol 317:C177–C188

    Article  CAS  PubMed  Google Scholar 

  19. Palazzo AF, Lee ES (2015) Non-coding RNA: what is functional and what is junk? Front Genet 6:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Su JL, Chen PS, Johansson G, Kuo ML (2012) Function and regulation of let-7 family microRNAs. Microrna 1:34–39

    Article  CAS  PubMed  Google Scholar 

  21. Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551

    Article  CAS  PubMed  Google Scholar 

  22. Shi Y (2020) MEG3 regulates apoptosis of adiposederived stem cells. Mol Med Rep 21:2435–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhuang W, Ge X, Yang S et al (2015) Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 33:1985–1997

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Liu Z, Liu L et al (2008) Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 9:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liew LJ, Ong HT, Dilley RJ (2017) Isolation and culture of adipose-derived stromal cells from subcutaneous fat. Methods Mol Biol 1627:193–203

    Article  CAS  PubMed  Google Scholar 

  26. Dechant G, Barde YA (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5:1131–1136

    Article  CAS  PubMed  Google Scholar 

  27. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  PubMed  Google Scholar 

  28. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Z, Jin YQ, Chen L et al (2015) Specific marker expression and cell state of Schwann cells during culture in vitro. PLoS ONE 10:e0123278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lee H, Han S, Kwon CS, Lee D (2016) Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7:100–113

    Article  CAS  PubMed  Google Scholar 

  31. Sun X, Liu J, Xu C, Tang SC, Ren H (2016) The insights of Let-7 miRNAs in oncogenesis and stem cell potency. J Cell Mol Med 20:1779–1788

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bussing I, Slack FJ, Grosshans H (2008) let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14:400–409

    Article  PubMed  CAS  Google Scholar 

  33. Li S, Wang X, Gu Y et al (2015) Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 23:423–433

    Article  CAS  PubMed  Google Scholar 

  34. Gokbuget D, Pereira JA, Bachofner S et al (2015) The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. Nat Commun 6:8584

    Article  CAS  PubMed  Google Scholar 

  35. Sohn EJ, Park HT (2018) MicroRNA mediated regulation of schwann cell migration and proliferation in peripheral nerve injury. Biomed Res Int 2018:8198365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang J, Wang J, Guo Q, Zou W (2019) Emerging roles of microRNAs in morphine tolerance. J Pain Res 12:1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dai J, Dong R, Han X et al (2020) Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am J Physiol Cell Physiol 319(1):C21–C33

    Article  CAS  Google Scholar 

  39. Duan S, Li J, Tian J et al (2019) Crosstalk between let-7a-5p and BCL-xL in the Initiation of Toxic Autophagy in Lung Cancer. Mol Ther Oncolytics 15:69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan S, Yu S, Yuan T, Yao S, Zhang L (2019) Exogenous Let-7a-5p induces A549 lung cancer cell death through BCL2L1-mediated PI3Kgamma signaling pathway. Front Oncol 9:808

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sommerkamp P, Renders S, Ladel L et al (2019) The long non-coding RNA Meg3 is dispensable for hematopoietic stem cells. Sci Rep 9:2110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lee S, Seo HH, Lee CY et al (2017) Human long noncoding RNA regulation of stem cell potency and differentiation. Stem Cells Int 2017:6374504

    PubMed  PubMed Central  Google Scholar 

  43. Wang Q, Li Y, Zhang Y et al (2017) LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 89:1178–1186

    Article  CAS  PubMed  Google Scholar 

  44. Sun X, Luo LH, Feng L, Li DS (2018) Down-regulation of lncRNA MEG3 promotes endothelial differentiation of bone marrow derived mesenchymal stem cells in repairing erectile dysfunction. Life Sci 208:246–252

    Article  CAS  PubMed  Google Scholar 

  45. You D, Yang C, Huang J, Gong H, Yan M, Ni J (2019) Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via methyltransferase EZH2. Cell Signal 63:109379

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Jin C, Chen S et al (2017) Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem 433:51–60

    Article  CAS  PubMed  Google Scholar 

  47. Ghafouri-Fard S, Taheri M (2019) Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother 118:109129

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant/Award Number: 81601083, 81702238, 81401006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Gu, MF., Wang, ZF. et al. Let-7a-5p regulated by lncRNA-MEG3 promotes functional differentiation to Schwann cells from adipose derived stem cells via directly inhibiting RBPJ-mediating Notch pathway. Apoptosis 26, 548–560 (2021). https://doi.org/10.1007/s10495-021-01685-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01685-x

Keywords

Navigation