Skip to main content

Advertisement

Log in

SDF-1 induces TNF-mediated apoptosis in cardiac myocytes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation. One such chemokine, Stromal cell-derived factor-1 (SDF-1) also known as CXCL12, and its receptor, CXCR4, are expressed and functional in cardiac myocytes. SDF-1 both stimulates and enhances the cellular signal which attracts potentially beneficial stem cells for tissue repair within the ischemic heart. Paradoxically however, this chemokine is known to act in concert with the inflammatory cytokines of the innate immune response which contributes to cellular injury through the recruitment of inflammatory cells during ischemia. In the present study, we have demonstrated that SDF-1 has dose dependent effects on freshly isolated cardiomyocytes. Using Tunnel and caspase 3-activation assays, we have demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations (pathological concentrations) induced apoptosis. Furthermore, ELISA data demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations upregulated TNF-α protein expression which directly correlated with subsequent apoptosis. There was a significant reduction in SDF-1 mediated apoptosis when TNF-α expression was neutralized which suggests that SDF-1 mediated apoptosis is TNF-α-dependent. The fact that certain stimuli are capable of driving cardiomyocytes into apoptosis indicates that these cells are susceptible to clinically relevant apoptotic triggers. Our findings suggest that the elevated SDF-1 levels seen in a variety of clinical conditions, including ischemic myocardial infarction, may either directly or indirectly contribute to cardiac cell death via a TNF-α mediated pathway. This highlights the importance of this receptor/ligand in regulating the cardiomyocyte response to stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  CAS  PubMed  Google Scholar 

  2. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  3. Mieno S, Ramlawi B, Boodhwani M, Clements RT, Minamimura K, Maki T, Xu SH, Bianchi C, Li J, Sellke FW (2006) Role of stromal-derived factor-1alpha in the induction of circulating CD34 + CXCR4 + progenitor cells after cardiac surgery. Circulation 114:I186–I192

    Article  PubMed  Google Scholar 

  4. Chen J, Chemaly E, Liang L, Kho C, Lee A, Park J, Altman P, Schecter AD, Hajjar RJ, Tarzami ST (2010) Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. Am J Pathol 176:1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jo DY, Rafii S, Hamada T, Moore MA (2000) Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest 105:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hughes S (2002) Cardiac stem cells. J Pathol 197:468–478

    Article  PubMed  Google Scholar 

  7. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  8. Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, Zhang J (2007) Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit + cell homing to the infarcted heart. Tissue Eng 13:2063–2071

    Article  CAS  PubMed  Google Scholar 

  9. Elmadbouh I, Haider H, Jiang S, Idris NM, Lu G, Ashraf M (2007) Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 42:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    Article  CAS  PubMed  Google Scholar 

  11. Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature 346:274–276

    Article  CAS  PubMed  Google Scholar 

  12. Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–R595

    Article  CAS  PubMed  Google Scholar 

  13. Ferrari R (1999) The role of TNF in cardiovascular disease. Pharmacol Res 40:97–105

    Article  CAS  PubMed  Google Scholar 

  14. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35:537–544

    Article  CAS  PubMed  Google Scholar 

  15. Garza EHH, Garza JLH, Gonzalez HR, Trevino AT, Flores MI, Amione GT (2002) Importance of tumor necrosis factor-alpha in the pathogenesis of heart failure. Rev Esp Cardiol 55:61–66

    Article  Google Scholar 

  16. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97:1375–1381

    Article  CAS  PubMed  Google Scholar 

  17. Seino Y, Ikeda U, Sekiguchi H, Morita M, Konishi K, Kasahara T, Shimada K (1995) Expression of leukocyte chemotactic cytokines in myocardial tissue. Cytokine 7:301–304

    Article  CAS  PubMed  Google Scholar 

  18. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S (1997) Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 81:664–671

    Article  CAS  PubMed  Google Scholar 

  19. Behr TM, Wang X, Aiyar N, Coatney RW, Li X, Koster P, Angermann CE, Ohlstein E, Feuerstein GZ, Winaver J (2000) Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation 102:1315–1322

    Article  CAS  PubMed  Google Scholar 

  20. Frangogiannis NG, Entman ML (2004) Targeting the chemokines in myocardial inflammation. Circulation 110:1341–1342

    Article  PubMed  Google Scholar 

  21. Limbourg FP, Ringes-Lichtenberg S, Schaefer A, Jacoby C, Mehraein Y, Jager MD, Limbourg A, Fuchs M, Klein G, Ballmaier M et al (2005) Haematopoietic stem cells improve cardiac function after infarction without permanent cardiac engraftment. Eur J Heart Fail 7:722–729

    Article  CAS  PubMed  Google Scholar 

  22. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  23. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  PubMed  Google Scholar 

  24. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S et al (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218

    Article  CAS  PubMed  Google Scholar 

  25. Laflamme MA, Zbinden S, Epstein SE, Murry CE (2007) Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol 2:307–339

    Article  CAS  PubMed  Google Scholar 

  26. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, Kim YJ, Soo Lee D, Sohn DW, Han KS et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756

    Article  CAS  PubMed  Google Scholar 

  27. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694

    Article  CAS  PubMed  Google Scholar 

  28. Broxmeyer HE (2008) Chemokines in hematopoiesis. Curr Opin Hematol 15:49–58

    Article  CAS  PubMed  Google Scholar 

  29. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

  31. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 938:36–45 (discussion 45–37)

    Article  CAS  PubMed  Google Scholar 

  32. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K (2004) Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109:2454–2461

    Article  CAS  PubMed  Google Scholar 

  33. Khan MZ, Brandimarti R, Patel JP, Huynh N, Wang J, Huang Z, Fatatis A, Meucci O (2004) Apoptotic and antiapoptotic effects of CXCR4: is it a matter of intrinsic efficacy? Implications for HIV neuropathogenesis. AIDS Res Hum Retroviruses 20:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, Guo Y, Bolli R, Rokosh G (2007) Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116:654–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Penn MS, Zhang M, Deglurkar I, Topol EJ (2004) Role of stem cell homing in myocardial regeneration. Int J Cardiol 95(Suppl 1):S23–S25

    Article  PubMed  Google Scholar 

  36. Colamussi ML, Secchiero P, Zella D, Curreli S, Mirandola P, Capitani S, Zauli G (2000) Stromal derived factor-1 alpha induces apoptosis in activated primary CD4+ T cells. Aids 14:748–750

    Article  CAS  PubMed  Google Scholar 

  37. Ilhan A, Nabokikh A, Maj M, Vidakovic M, Nielsen JH, Prikoszovich T, Niederle B, Base W, Luger A, Wagner L (2009) CXCL12/SDF-1 over-expression in human insulinomas and its biological relevance. Mol Cell Endocrinol 298:1–10

    Article  CAS  PubMed  Google Scholar 

  38. Han Y, He T, Huang DR, Pardo CA, Ransohoff RM (2001) TNF-alpha mediates SDF-1 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes. J Clin Invest 108:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LaRocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, Alvin Z, Champion HC, Haddad G, Hajjar RJ et al (2010) β2-Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J Cardiovasc Pharmacol 56:548–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang C, Soori M, Miles FL, Sikes RA, Carson DD, Chung LW, Farach-Carson MC (2011) Paracrine factors produced by bone marrow stromal cells induce apoptosis and neuroendocrine differentiation in prostate cancer cells. Prostate 71:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharlow ER, Leimgruber S, Murray S, Lira A, Sciotti RJ, Hickman M, Hudson T, Leed S, Caridha D, Barrios AM et al (2014) Auranofin is an apoptosis-simulating agent with in vitro and in vivo anti-leishmanial activity. ACS Chem Biol 9:663–672

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tarzami ST, Calderon TM, Deguzman A, Lopez L, Kitsis RN, Berman JW (2005) MCP-1/CCL2 protects cardiac myocytes from hypoxia-induced apoptosis by a G(alphai)-independent pathway. Biochem Biophys Res Commun 335:1008–1016

    Article  CAS  PubMed  Google Scholar 

  44. Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD, Scadden DT (2000) Active movement of T cells away from a chemokine. Nat Med 6:543–548

    Article  CAS  PubMed  Google Scholar 

  45. Damas JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T, Tonnessen T, Geiran OR, Aass H, Simonsen S et al (2000) Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 47:778–787

    Article  CAS  PubMed  Google Scholar 

  46. Damas JK, Gullestad L, Ueland T, Solum NO, Simonsen S, Froland SS, Aukrust P (2000) CXC-chemokines, a new group of cytokines in congestive heart failure—possible role of platelets and monocytes. Cardiovasc Res 45:428–436

    Article  CAS  PubMed  Google Scholar 

  47. Rossiter JP, Anderson LL, Yang F, Cole GM (2002) Caspase-3 activation and caspase-like proteolytic activity in human perinatal hypoxic-ischemic brain injury. Acta Neuropathol 103:66–73

    Article  CAS  PubMed  Google Scholar 

  48. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233

    Article  CAS  PubMed  Google Scholar 

  50. Chen P, Hu YF, Wang L, Xiao WF, Bao XY, Pan C, Yi HS, Chen XY, Pan MH, Lu C (2015) Mitochondrial apoptotic pathway is activated by H2O2-mediated oxidative stress in BmN-SWU1 cells from Bombyx mori ovary. PLoS ONE 10:e0134694

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I (2000) Beta-adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275:34528–34533

    Article  CAS  PubMed  Google Scholar 

  52. Shin SY, Kim T, Lee HS, Kang JH, Lee JY, Cho KH, Kim DH (2014) The switching role of beta-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat Commun 5:5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steenbergen C (2002) The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Res Cardiol 97:276–285

    Article  CAS  PubMed  Google Scholar 

  54. Streicher JM, Ren S, Herschman H, Wang Y (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 106:1434–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marber MS, Rose B, Wang Y (2011) The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol 51:485–490

    Article  CAS  PubMed  Google Scholar 

  56. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  CAS  PubMed  Google Scholar 

  57. Kunz M, Ibrahim S, Koczan D, Thiesen HJ, Kohler HJ, Acker T, Plate KH, Ludwig S, Rapp UR, Brocker EB et al (2001) Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth Differ 12:137–145

    CAS  PubMed  Google Scholar 

  58. Pyo RT, Sui J, Dhume A, Palomeque J, Blaxall BC, Diaz G, Tunstead J, Logothetis DE, Hajjar RJ, Schecter AD (2006) CXCR4 modulates contractility in adult cardiac myocytes. J Mol Cell Cardiol 41:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts JP, De Clercq E, De Meester I, Van Damme J (1998) Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 432:73–76

    Article  CAS  PubMed  Google Scholar 

  60. Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster AD (2000) The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 86:131–138

    Article  CAS  PubMed  Google Scholar 

  61. Liu J, Wu N, Ma LN, Zhong JT, Liu G, Zheng LH, Lin XK (2014) p38 MAPK signaling mediates mitochondrial apoptosis in cancer cells induced by oleanolic acid. Asian Pac J Cancer Prev 15:4519–4525

    Article  PubMed  Google Scholar 

  62. Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T et al (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275:322–327

    Article  CAS  PubMed  Google Scholar 

  63. Larocca TJ, Jeong D, Kohlbrenner E, Lee A, Chen J, Hajjar RJ, Tarzami ST (2012) CXCR4 gene transfer prevents pressure overload induced heart failure. J Mol Cell Cardiol 53:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part by, (1) American Heart Association (GRNT4180006) and (2) National Institute of Minority Health and Health Disparities of the National Institutes of Health (G12MD007597). We would like to acknowledge the Howard University RCMI (Research Centers in Minority Institutions) and the HU-Advance-it society for providing helpful programs to address minority health and health disparities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima T. Tarzami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrah, A.A., Schwarskopf, M., Wang, E.R. et al. SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis 23, 79–91 (2018). https://doi.org/10.1007/s10495-017-1438-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1438-3

Keywords

Navigation