Skip to main content
Log in

Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Endothelial apoptosis triggered by oxidized low-density lipoprotein (oxLDL) can accelerate the progression of endothelial dysfunction atherosclerosis. Phosphocreatine (PCr) is a natural compound, which has been used in cardiac disease and cardiopulmonary resuscitation. However, its protective effects on atherosclerosis and its mechanism have not been clarified. In the present study, we investigated the anti-apoptotic effect of phosphocreatine in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. HUVECs were pre-treated with 10–30 mM PCr and then stimulated with oxLDL. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, CCK assay, and flow cytometry respectively. Levels of Bax, Bcl-2, protein expression of protein kinase B (Akt), eNOS and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Lactate dehydrogenase (LDH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) contents were determined by spectrophotometer. Our results showed that PCr dose-dependently prevented oxLDL associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, LDH and MDA leakage and loss of SOD, decrease of Bcl-2/Bax protein ratio, activation of caspase-3 and 9, and ROS generation. In addition, the antiapoptotic effect of PCr was partially inhibited by a PI3K inhibitor (LY294002) and also enhanced p-Akt/Akt protein ratio, eNOS activation and NO production. In conclusion, our data show that the inhibition of oxLDL-induced endothelial apoptosis by PCr is due, at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PCr:

Phosopho creatine

oxLDL:

Oxidative low density lipoprotein

FBS:

Fetal bovine serum

HUVEC:

Human umbilical vein endothelial cell

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

Akt:

Protein kinase B

eNOS:

Endothelial nitric oxide synthase

NO:

Nitric oxide

NAC:

N-Acetyl cysteine

References

  1. Weinberg PD (2004) Rate-limiting steps in the development of atherosclerosis: the response-to-influx theory. J Vasc Res 41(1):1–17

    Article  PubMed  Google Scholar 

  2. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  4. Steinberg D et al (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320(14):915–924

    Article  CAS  PubMed  Google Scholar 

  5. Napoli C (2003) Oxidation of LDL, atherogenesis, and apoptosis. Ann N Y Acad Sci 1010:698–709

    Article  CAS  PubMed  Google Scholar 

  6. Romano M et al (1998) Ultrastructural localization of secretory type II phospholipase A2 in atherosclerotic and nonatherosclerotic regions of human arteries. Arterioscler Thromb Vasc Biol 18(4):519–525

    Article  CAS  PubMed  Google Scholar 

  7. Auge N et al (1999) Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274(31):21533–21538

    Article  CAS  PubMed  Google Scholar 

  8. Salvayre R et al (2002) Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 1585(2–3):213–221

    Article  CAS  PubMed  Google Scholar 

  9. Cho BB, Toledo-Pereyra LH (2008) Caspase-independent programmed cell death following ischemic stroke. J Invest Surg 21(3):141–147

    Article  PubMed  Google Scholar 

  10. Fulton D et al (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736):597–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927

    Article  CAS  PubMed  Google Scholar 

  12. Chavakis E et al (2001) Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation 103(16):2102–2107

    Article  CAS  PubMed  Google Scholar 

  13. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18(4):195–199

    Article  CAS  PubMed  Google Scholar 

  14. Jaffe EA et al (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52(11):2745–2756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Spaet TH, Stemerman MB (1972) Platelet adhesion. Ann N Y Acad Sci 201:13–21

    Article  CAS  PubMed  Google Scholar 

  16. Stemerman MB, Spaet TH (1972) The subendothelium and thrombogenesis. Bull N Y Acad Med 48(2):289–301

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Ohta MY et al (2000) Inhibitory effect of troglitazone on TNF-alpha-induced expression of monocyte chemoattractant protein-1 (MCP-1) in human endothelial cells. Diabetes Res Clin Pract 48(3):171–176

    Article  CAS  PubMed  Google Scholar 

  18. Fitch CD et al (1968) Creatine metabolism in skeletal muscle. 3. Specificity of the creatine entry process. J Biol Chem 243(8):2024–2027

    CAS  PubMed  Google Scholar 

  19. Chambers DJ et al (1996) St. Thomas’ Hospital cardioplegia: enhanced protection with exogenous creatine phosphate. Ann Thorac Surg 61(1):67–75

    Article  CAS  PubMed  Google Scholar 

  20. Balestrino M et al (2002) Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23(1–3):221–229

    Article  CAS  PubMed  Google Scholar 

  21. Wang CB et al (1995) Rapid isolation of large amount of plasma VLDL and LDL by a two step ultracentrifugation. J Tongji Med Univ 15(4):198–200

    Article  CAS  PubMed  Google Scholar 

  22. Aviram M, Vaya J (2001) Markers for low-density lipoprotein oxidation. Methods Enzymol 335:244–256

    Article  CAS  PubMed  Google Scholar 

  23. Amaravadi R, Thompson CB (2005) The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115(10):2618–2624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mannarino E, Pirro M (2008) Molecular biology of atherosclerosis. Clin Cases Miner Bone Metab 5(1):57–62

    PubMed Central  PubMed  Google Scholar 

  25. Resch U et al (2006) Reduction of oxidative stress and modulation of autoantibodies against modified low-density lipoprotein after rosuvastatin therapy. Br J Clin Pharmacol 61(3):262–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chen CH et al (2000) Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation 101(2):171–177

    Article  CAS  PubMed  Google Scholar 

  27. Inoue M et al (2001) Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator-activated receptor-gamma. Arterioscler Thromb Vasc Biol 21(4):560–566

    Article  CAS  PubMed  Google Scholar 

  28. Kuzuya M et al (2001) VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arterioscler Thromb Vasc Biol 21(5):765–770

    Article  CAS  PubMed  Google Scholar 

  29. Jovinge S et al (1996) Human monocytes/macrophages release TNF-alpha in response to Ox-LDL. Arterioscler Thromb Vasc Biol 16(12):1573–1579

    Article  CAS  PubMed  Google Scholar 

  30. Erl W, Weber PC, Weber C (1998) Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis 136(2):297–303

    Article  CAS  PubMed  Google Scholar 

  31. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(23 Suppl 1):iii27–iii32

    PubMed  Google Scholar 

  32. Thorin-Trescases N et al (2005) Pathological aging of the vascular endothelium: are endothelial progenitor cells the sentinels of the cardiovascular system? Can J Cardiol 21(12):1019–1024

    CAS  PubMed  Google Scholar 

  33. Sun J et al (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13(6):719–724

    Article  CAS  PubMed  Google Scholar 

  34. Chen YH et al (2006) Anti-inflammatory effects of different drugs/agents with antioxidant property on endothelial expression of adhesion molecules. Cardiovasc Hematol Disord Drug Targets 6(4):279–304

    Article  CAS  PubMed  Google Scholar 

  35. Lander HM (1997) An essential role for free radicals and derived species in signal transduction. Faseb J 11(2):118–124

    CAS  PubMed  Google Scholar 

  36. Chandel NS et al (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165(2):1013–1021

    Article  CAS  PubMed  Google Scholar 

  37. Roebuck KA (1999) Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (review). Int J Mol Med 4(3):223–230

    CAS  PubMed  Google Scholar 

  38. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  39. Gauthaman K et al (2001) Effect of chronic treatment with bark of Terminalia arjuna: a study on the isolated ischemic-reperfused rat heart. J Ethnopharmacol 75(2–3):197–201

    Article  CAS  PubMed  Google Scholar 

  40. Luo X et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490

    Article  CAS  PubMed  Google Scholar 

  41. Sugawara T et al (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1(1):17–25

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hockenbery D et al (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348(6299):334–336

    Article  CAS  PubMed  Google Scholar 

  43. Choy JC et al (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33(9):1673–1690

    Article  CAS  PubMed  Google Scholar 

  44. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8(2):115–128

    Article  CAS  PubMed  Google Scholar 

  45. Dimmeler S et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605

    Article  CAS  PubMed  Google Scholar 

  46. Achan V et al (2003) Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 23(8):1455–1459

    Article  CAS  PubMed  Google Scholar 

  47. Ignarro LJ et al (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34(6):879–886

    Article  CAS  PubMed  Google Scholar 

  48. Napoli C et al (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15(4):265–279

    Article  CAS  PubMed  Google Scholar 

  49. Mannick JB et al (1999) Fas-induced caspase denitrosylation. Science 284(5414):651–654

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann J et al (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89(8):709–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 30772601) and the University Innovation Team Project Foundation of Education Department of Liaoning Province (No. LT2013019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyao Tang.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, A., Han, G., Pan, J. et al. Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Apoptosis 20, 1563–1576 (2015). https://doi.org/10.1007/s10495-015-1175-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1175-4

Keywords

Navigation