Skip to main content
Log in

Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–1273

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bruix J, Gores GJ, Mazzaferro V (2014) Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63(5):844–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol 7(8):448–458

    Article  PubMed Central  PubMed  Google Scholar 

  5. Marquardt JU, Thorgeirsson SS (2014) SnapShot: hepatocellular carcinoma. Cancer Cell 25(4):550

    Article  CAS  PubMed  Google Scholar 

  6. Camma C, Cabibbo G, Petta S, Enea M, Iavarone M, Grieco A et al (2013) Cost-effectiveness of sorafenib treatment in field practice for patients with hepatocellular carcinoma. Hepatology 57(3):1046–1054

    Article  CAS  PubMed  Google Scholar 

  7. Abdel-Rahman O, Fouad M (2014) Sorafenib-based combination as a first line treatment for advanced hepatocellular carcinoma: a systematic review of the literature. Crit Rev Oncol Hematol 91(1):1–8

    Article  PubMed  Google Scholar 

  8. Avila MA, Berasain C, Sangro B, Prieto J (2006) New therapies for hepatocellular carcinoma. Oncogene 25(27):3866–3884

    Article  CAS  PubMed  Google Scholar 

  9. Klein J, Dawson LA (2013) Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys 87(1):22–32

    Article  PubMed  Google Scholar 

  10. Chaturvedi D, Goswami A, Saikia PP, Barua NC, Rao PG (2010) Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev 39(2):435–454

    Article  CAS  PubMed  Google Scholar 

  11. Ho WE, Peh HY, Chan TK, Wong WS (2014) Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther 142(1):126–139

    Article  CAS  PubMed  Google Scholar 

  12. Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B (2014) Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther 10(12):2224–2233

    Article  Google Scholar 

  13. Zhao CB, Gao WJ, Chen TS (2014) Synergistic induction of apoptosis in A549 cells by dihydroartemisinin and gemcitabine. Apoptosis 19(4):668–681

    Article  CAS  PubMed  Google Scholar 

  14. Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31(1):230–246

    Article  CAS  PubMed  Google Scholar 

  15. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14(17):5519–5530

    Article  CAS  PubMed  Google Scholar 

  16. Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol 2012:247597

    Article  PubMed Central  PubMed  Google Scholar 

  17. Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:e32

    Article  PubMed  Google Scholar 

  18. Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH et al (2010) Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293(1):99–108

    Article  CAS  PubMed  Google Scholar 

  19. Chen T, Li M, Zhang R, Wang H (2009) Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med 13(7):1358–1370

    Article  CAS  PubMed  Google Scholar 

  20. Zhao CB, Qin GQ, Gao WJ, Chen JQ, Liu HY, Xi GN et al (2014) Potent proapoptotic actions of dihydroartemisinin in gemcitabine-resistant A549 cells. Cell Signal 26(10):2223–2233

    Article  CAS  PubMed  Google Scholar 

  21. Ji Y, Zhang YC, Pei LB, Shi LL, Yan JL, Ma XH (2011) Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol Cell Biochem 351(1–2):99–108

    Article  CAS  PubMed  Google Scholar 

  22. Sun H, Meng X, Han J, Zhang Z, Wang B, Bai X, Zhang X (2013) Anti-cancer activity of DHA on gastric cancer–an in vitro and in vivo study. Tumour Biol 34(6):3791–3800

    Article  CAS  PubMed  Google Scholar 

  23. Lu YY, Chen TS, Wang XP, Qu JL, Chen M (2010) The JNK inhibitor SP600125 enhances dihydroartemisinin-induced apoptosis by accelerating Bax translocation into mitochondria in human lung adenocarcinoma cells. FEBS Lett 584(18):4019–4026

    Article  CAS  PubMed  Google Scholar 

  24. Chen TS, Chen M, Chen JQ (2013) Ionizing radiation potentiates dihydroartemisinin-induced apoptosis of A549 cells via a caspase-8-dependent pathway. PLoS ONE 8(3):e59827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Handrick R, Ontikatze T, Bauer KD, Freier F, Rubel A, Durig J et al (2010) Dihydroartemisinin induces apoptosis by a Bak-dependent intrinsic pathway. Mol Cancer Ther 9(9):2497–2510

    Article  CAS  PubMed  Google Scholar 

  26. Gao XL, Luo Z, Xiang TX, Wang KJ, Li J, Wang PL (2011) Dihydroartemisinin induces endoplasmic reticulum stress-mediated apoptosis in HepG2 human hepatoma cells. Tumori 97(6):771–780

    CAS  PubMed  Google Scholar 

  27. Zhang CZ, Zhang H, Yun J, Chen GG, Lai PB (2012) Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 83(9):1278–1289

    Article  CAS  PubMed  Google Scholar 

  28. Zhang CZ, Pan Y, Cao Y, Lai PB, Liu L, Chen GG, Yun J (2012) Histone deacetylase inhibitors facilitate dihydroartemisinin-induced apoptosis in liver cancer in vitro and in vivo. PLoS ONE 7(6):e39870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP et al (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36(3):487–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL et al (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44(4):517–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhou CJ, Pan WL, Wang XP, Chen TS (2012) Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol 227(12):3778–3786

    Article  CAS  PubMed  Google Scholar 

  32. Mao H, Gu H, Qu X, Sun J, Song B, Gao W et al (2013) Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int J Mol Med 31(1):213–218

    CAS  PubMed  Google Scholar 

  33. Ontikatze T, Rudner J, Handrick R, Belka C, Jendrossek V (2014) Dihydroartemisinin is a hypoxia-active anti-cancer drug in colorectal carcinoma cells. Front Oncol 4:116

    Article  PubMed Central  PubMed  Google Scholar 

  34. Cabello CM, Lamore SD, Bair WB III, Qiao S, Azimian S, Lesson JL, Wondrak GT (2012) The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs 30(4):1289–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gao WJ, Xiao FL, Wang XP, Chen TS (2013) Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3. Apoptosis 18(10):1201–1213

    Article  CAS  PubMed  Google Scholar 

  36. Liang Q, Wang XP, Chen TS (2014) Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS. Apoptosis 19(9):1354–1363

    Article  CAS  PubMed  Google Scholar 

  37. Lu YY, Chen TS, Wang XP, Li L (2010) Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques. J Biomed Opt 15(4):046028

    Article  PubMed  Google Scholar 

  38. Koyama T, Kume S, Koya D, Araki S, Isshiki K, Chin-Kanasaki M et al (2011) SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic Biol Med 51(6):1258–1267

    Article  CAS  PubMed  Google Scholar 

  39. Onuki R, Nagasaki A, Kawasaki H, Baba T, Uyeda TQ, Taira K (2002) Confirmation by FRET in individual living cells of the absence of significant amyloid beta -mediated caspase 8 activation. Proc Natl Acad Sci USA 99(23):14716–14721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Takikawa Y, Miyoshi H, Rust C, Roberts P, Siegel R, Mandal PK et al (2001) The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology 120(7):1810–1817

    Article  CAS  PubMed  Google Scholar 

  41. Chen S, Dai Y, Harada H, Dent P, Grant S (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67(2):782–791

    Article  CAS  PubMed  Google Scholar 

  42. Zhang WW, Wang XP, Chen TS (2012) Resveratrol induces apoptosis via a Bak-mediated intrinsic pathway in human lung adenocarcinoma cells. Cell Signal 24(5):1037–1046

    Article  CAS  PubMed  Google Scholar 

  43. McDonnell MA, Wang D, Khan SM, Vander Heiden MG, Kelekar A (2003) Caspase-9 is activated in a cytochrome c-independent manner early during TNFα-induced apoptosis in murine cells. Cell Death Differ 10(9):1005–1015

    Article  CAS  PubMed  Google Scholar 

  44. Plotz M, Gillissen B, Hossini AM, Daniel PT, Eberle J (2012) Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ 19(12):1928–1938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rehman K, Tariq M, Akash MS, Gillani Z, Qazi MH (2014) Effect of HA14-1 on apoptosis-regulating proteins in HeLa cells. Chem Biol Drug Des 83(3):317–323

    Article  CAS  PubMed  Google Scholar 

  46. Neise D, Graupner V, Gillissen BF, Daniel PT, Schulze-Osthoff K, Janicke RU, Essmann F (2008) Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene 27(10):1387–1396

    Article  CAS  PubMed  Google Scholar 

  47. Ba Q, Zhou N, Duan J, Chen T, Hao M, Yang X et al (2012) Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1. PLoS ONE 7(8):e42703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lu JJ, Yang Z, Lu DZ, Wo XD, Shi JJ, Lin TQ et al (2012) Dihydroartemisinin-induced inhibition of proliferation in BEL-7402 cells: an analysis of the mitochondrial proteome. Mol Med Rep 6(2):429–433

    CAS  PubMed  Google Scholar 

  49. Kutuk O, Arisan ED, Tezil T, Shoshan MC, Basaga H (2009) Cisplatin overcomes Bcl-2-mediated resistance to apoptosis via preferential engagement of Bak: critical role of Noxa-mediated lipid peroxidation. Carcinogenesis 30(9):1517–1527

    Article  CAS  PubMed  Google Scholar 

  50. Prochazka L, Dong LF, Valis K, Freeman R, Ralph SJ, Turanek J, Neuzil J (2010) alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis 15(7):782–794

    Article  CAS  PubMed  Google Scholar 

  51. Karlberg M, Ekoff M, Labi V, Strasser A, Huang D, Nilsson G (2010) Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis. Cell Death Dis 1:e43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281(30):21256–21265

    Article  CAS  PubMed  Google Scholar 

  53. Simonin K, Brotin E, Dufort S, Dutoit S, Goux D, N’Diaye M et al (2009) Mcl-1 is an important determinant of the apoptotic response to the BH3-mimetic molecule HA14-1 in cisplatin-resistant ovarian carcinoma cells. Mol Cancer Ther 8(11):3162–3170

    Article  CAS  PubMed  Google Scholar 

  54. Jiao Y, Tong J (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth1. Acta Pharmacol Sin 28(7):1045–1056

    Article  CAS  PubMed  Google Scholar 

  55. Gao N, Budhraja A, Cheng S, Liu EH, Huang C, Chen J et al (2011) Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo. Apoptosis 16(5):511–523

    Article  CAS  PubMed  Google Scholar 

  56. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S et al (2006) Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol 44(1):151–157

    Article  CAS  PubMed  Google Scholar 

  58. Chen M, Chen TS, Lu YY, Liu CY, Qu JL (2012) Dihydroarteminsin-induced apoptosis is not dependent on the translocation of Bim to the endoplasmic reticulum in human lung adenocarcinoma cells. Pathol Oncol Res 18(4):809–816

    Article  CAS  PubMed  Google Scholar 

  59. Huang S, Sinicrope FA (2008) BH3 mimetic ABT-737 potentiates TRAIL-mediated apoptotic signaling by unsequestering Bim and Bak in human pancreatic cancer cells. Cancer Res 68(8):2944–2951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Michalak EM, Villunger A, Adams JM, Strasser A (2008) In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 15(6):1019–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Han J, Goldstein LA, Hou W, Rabinowich H (2007) Functional linkage between NOXA and Bim in mitochondrial apoptotic events. J Biol Chem 282(22):16223–16231

    Article  CAS  PubMed  Google Scholar 

  62. Erlacher M, Labi V, Manzl C, Bock G, Tzankov A, Hacker G et al (2006) Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 203(13):2939–2951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. K. Taira for providing CFP-Bid plasmid and Dr. G. J. Gores for providing GFP Cyt.c plasmid. This work was supported by National Natural Science Foundation of China (Nos. 61178078, 81471699 and 61308111) and Guangzhou science and technology plan project (No. 2014J4100055).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Wang or Tongsheng Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Zhao, C., Zhang, L. et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis 20, 1072–1086 (2015). https://doi.org/10.1007/s10495-015-1132-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1132-2

Keywords

Navigation